a dpg method for the schr odinger equation
play

A DPG method for the Schr odinger equation Jay Gopalakrishnan - PowerPoint PPT Presentation

A DPG method for the Schr odinger equation Jay Gopalakrishnan Portland State University Collaborators: L. Demkowicz, S. Nagaraj, P. Sep ulveda RICAM Workshop on spacetime methods November 2016 AFOSR, NSF, RICAM Thanks: Jay


  1. A DPG method for the Schr¨ odinger equation Jay Gopalakrishnan Portland State University Collaborators: L. Demkowicz, S. Nagaraj, P. Sep´ ulveda RICAM Workshop on spacetime methods November 2016 AFOSR, NSF, RICAM Thanks: Jay Gopalakrishnan 1/28

  2. “Petrov-Galerkin” schemes (PG) PG schemes are distinguished by different trial and test (Hilbert) spaces. � P.D.E.+ The problem: boundary conditions. ↓  Find x in a trial space X satisfying  Variational form: b ( x , y ) = ℓ ( y )  for all y in a test space Y. ↓  Find x h in a discrete trial space X h ⊂ X satisfying  Discretization: b ( x h , y h ) = ℓ ( y h )  for all y h in a discrete test space Y h ⊂ Y . For PG schemes, X h � = Y h in general. Jay Gopalakrishnan 2/28

  3. � Elements of theory Variational formulation:   Exact inf-sup condition � � a uniqueness   | b ( x , y ) |  + = ⇒ wellposedness  C � x � X ≤ sup condition � y � Y y ∈ Y Babuˇ ska’s theorem:   Discrete inf-sup condition    = ⇒ � x − x h � X ≤ C inf � x − w h � X . | b ( x h , y h ) |  C � x h � X ≤ sup w h ∈ X h � y h � Y y h ∈ Y h Difficulty: Exact inf-sup condition = ⇒ Discrete inf-sup condition Jay Gopalakrishnan 3/28

  4. � Elements of theory Variational formulation:   Exact inf-sup condition � � a uniqueness   | b ( x , y ) |  + = ⇒ wellposedness  C � x � X ≤ sup condition � y � Y y ∈ Y Babuˇ ska’s theorem:   Discrete inf-sup condition    = ⇒ � x − x h � X ≤ C inf � x − w h � X . | b ( x h , y h ) |  C � x h � X ≤ sup w h ∈ X h � y h � Y y h ∈ Y h Difficulty: Exact inf-sup condition = ⇒ Discrete inf-sup condition Is there a way to find a stable test space for any given trial space? Jay Gopalakrishnan 3/28

  5. The ideal DPG method Pick any X h ⊆ X . The ideal DPG method finds x h ∈ X h such that ∀ y ∈ Y opt def b ( x h , y ) = ℓ ( y ) , = T ( X h ) , h where T : X �→ Y is defined by ( Tw , y ) Y = b ( w , y ) , ∀ w ∈ X , y ∈ Y . [ Demkowicz+G 2011 ] Rationale: Jay Gopalakrishnan 4/28

  6. The ideal DPG method Pick any X h ⊆ X . The ideal DPG method finds x h ∈ X h such that ∀ y ∈ Y opt def b ( x h , y ) = ℓ ( y ) , = T ( X h ) , h where T : X �→ Y is defined by ( Tw , y ) Y = b ( w , y ) , ∀ w ∈ X , y ∈ Y . [ Demkowicz+G 2011 ] Rationale: Which function y maximizes | b ( x , y ) | Q: for any given x ? � y � Y A: y = Tx is the maximizer. ← Optimal test function. DPG Idea: If the discrete test space contains the optimal test functions, exact inf-sup condition = ⇒ discrete inf-sup condition . Jay Gopalakrishnan 4/28

  7. The ideal DPG method Pick any X h ⊆ X . The ideal DPG method finds x h ∈ X h such that ∀ y ∈ Y opt def b ( x h , y ) = ℓ ( y ) , = T ( X h ) , h where T : X �→ Y is defined by ( Tw , y ) Y = b ( w , y ) , ∀ w ∈ X , y ∈ Y . It is important to (re)formulate the problem so that Y admits DG functions. Jay Gopalakrishnan 4/28

  8. Quasi-Optimality of DPG Methods Assumption [U] (Uniqueness) { w ∈ X : b ( w , y ) = 0 ∀ y ∈ Y } = { 0 } . Assumption [I] (Inf-Sup & Continuity) | b ( w , y ) | ∃ C 1 , C 2 > 0 such that C 1 � y � Y ≤ sup ≤ C 2 � y � Y . � w � X w ∈ X Theorem [QO] (Quasi-Optimality) � x − x h � X ≤ C 2 Assumptions [U+I] = ⇒ inf � x − w h � X . C 1 w h ∈ X h [ Demkowicz+G 2011 ] Jay Gopalakrishnan 5/28

  9. Next Quick introduction to DPG methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ✦ Unbounded operator equations Broken weak form Heat equation vs. Schr¨ odinger equation A density result DPG method for the Schr¨ odinger equation Jay Gopalakrishnan 6/28

  10. An unbounded operator setting We are interested in numerically solving operator equations Au = f where A : L 2 ( Ω ) m → L 2 ( Ω ) l is an (unbounded) operator satisfying [ Au ] i = ∂ α ( a ij α u j ) , a ij α : Ω → C are bounded functions ∀ i = 1 , . . . l , ∀ j = 1 , . . . , m , ∀ multi-indices | α | ≤ k , D ( Ω ) m ⊆ dom A . Jay Gopalakrishnan 7/28

  11. Example: Helmholtz equation Helmholtz equation: − ∆ φ − ω 2 φ = ˆ in Ω ⊆ R N . ıω f , First order reformulation: ıω v + grad φ = � ˆ 0 , in Ω ˆ ıωφ + div v = f , in Ω. Jay Gopalakrishnan 8/28

  12. Example: Helmholtz equation Helmholtz equation: − ∆ φ − ω 2 φ = ˆ in Ω ⊆ R N . ıω f , First order reformulation: ıω v + grad φ = � ˆ 0 , in Ω ˆ ıωφ + div v = f , in Ω. Fit to the general structure: � 0 � v � � ˆ � � v � � � v � ıω v + grad φ grad Au = A = = ˆ ıω + φ ˆ ıωφ + div v φ div 0 φ �� 0 �� 0 � � � � e 1 e N = ∂ α ( a ij α u j ) = ˆ ıω u + ∂ 1 u + · · · + ∂ N u e t e t 0 0 1 N Jay Gopalakrishnan 8/28

  13. The Adjoint The adjoint of A is a closed (unbounded) operator A ∗ : L 2 ( Ω ) l → L 2 ( Ω ) m whose domain is � dom A ∗ = ∃ ℓ ∈ L 2 ( Ω ) m such that s ∈ L 2 ( Ω ) l : � ( Av , s ) Ω = ( v , ℓ ) Ω ∀ v ∈ dom ( A ) , and satisfies ∀ v ∈ dom A , v ∗ ∈ dom A ∗ . ( Av , v ∗ ) Ω = ( v , A ∗ v ∗ ) Ω , Assume that A ∗ u is a distribution for all u ∈ L 2 ( Ω ) l . Jay Gopalakrishnan 9/28

  14. Graph spaces These are the graph spaces of A and A ∗ : W ( Ω ) = { u ∈ L 2 ( Ω ) m : Au ∈ L 2 ( Ω ) l } , W ∗ ( Ω ) = { u ∈ L 2 ( Ω ) l : A ∗ u ∈ L 2 ( Ω ) m } When solving a PDE Au = f in the graph space, we incorporate boundary conditions in dom A . V = dom A in W ( Ω )-topology , V ∗ = dom A ∗ in W ∗ ( Ω )-topology . Elements of the modern theory of Friedrichs systems [ Ern+Guermond+Caplain 2007 ] can be generalized to this setting. Jay Gopalakrishnan 10/28

  15. Boundary Operator Define D : W ( Ω ) → W ∗ ( Ω ) ′ and D ∗ : W ∗ ( Ω ) → W ( Ω ) ′ by � Dw , w ∗ � W ∗ ( Ω ) = ( Aw , w ∗ ) Ω − ( w , A ∗ w ∗ ) Ω , � D ∗ w ∗ , w � W ( Ω ) = ( A ∗ w ∗ , w ) Ω − ( w ∗ , Aw ) Ω , for all w ∈ W ( Ω ) and w ∗ ∈ W ∗ ( Ω ). Lemma [DA] (Domain of the Adjoint) V ∗ = ⊥ D ( V ) = { w ∗ ∈ W ∗ ( Ω ) : � Dv , w ∗ � = 0 ∀ v ∈ V } . Jay Gopalakrishnan 11/28

  16. Example: Helmholtz equation � v � � ˆ � ıω v + grad φ Recall the operator: Au = A = ˆ ıωφ + div v φ Add impedance boundary condition: v · n − φ = 0 , on ∂Ω. Incorporating the boundary condition into domain, � � v � � � ∈ H (div , Ω ) × H 1 ( Ω ) : dom A = V = ( v . n − φ ) ∂Ω = 0 . � φ Jay Gopalakrishnan 12/28

  17. Example: Helmholtz equation � v � � ˆ � ıω v + grad φ Recall the operator: Au = A = ˆ ıωφ + div v φ Add impedance boundary condition: v · n − φ = 0 , on ∂Ω. Incorporating the boundary condition into domain, � � v � � � ∈ H (div , Ω ) × H 1 ( Ω ) : dom A = V = ( v . n − φ ) ∂Ω = 0 . � φ What is D? For smooth functions w , v , ψ, φ , � w � � v � � w · n ¯ � D � = φ + ψ v · n . , ψ φ ∂Ω Jay Gopalakrishnan 12/28

  18. Example: Helmholtz equation � v � � ˆ � ıω v + grad φ Recall the operator: Au = A = ˆ ıωφ + div v φ Add impedance boundary condition: v · n − φ = 0 , on ∂Ω. Incorporating the boundary condition into domain, � � v � � � ∈ H (div , Ω ) × H 1 ( Ω ) : dom A = V = ( v . n − φ ) ∂Ω = 0 . � φ What is D? For smooth functions w , v , ψ, φ , � w � � v � � w · n ¯ � D � = φ + ψ v · n . , ψ φ ∂Ω What is dom A ∗ , or V ∗ ? Lemma [DA] = ⇒ � � w � � V ∗ = ⊥ D ( V ) = � ∈ H (div , Ω ) × H 1 ( Ω ) : ( w . n + ψ ) ∂Ω = 0 . � ψ Jay Gopalakrishnan 12/28

  19. Next Quick introduction to DPG methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ✦ Unbounded operator equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ✦ Broken weak form Heat equation vs. Schr¨ odinger equation A density result DPG method for the Schr¨ odinger equation Jay Gopalakrishnan 13/28

  20. Strong & Weak forms Classical operator form Given f ∈ L 2 ( Ω ) l , find u ∈ V satisfying Au = f . Strong Petrov-Galerkin form Find u ∈ V satisfying ∀ v ∈ L 2 ( Ω ) l . ( Au , v ) Ω = ( f , v ) Weak Petrov-Galerkin form (Unbroken) Find u ∈ L 2 ( Ω ) m satisfying ( u , A ∗ v ) Ω = ( f , v ) Ω ∀ v ∈ V ∗ . ⇒ ( u , A ∗ v ) Ω + Au = f = � Du , v � = ( f , v ) Ω � �� � Lemma [DA] = ⇒ 0 Jay Gopalakrishnan 14/28

  21. Strong & Weak forms Classical operator form Given f ∈ L 2 ( Ω ) l , find u ∈ V satisfying Au = f . Strong Petrov-Galerkin form Find u ∈ V satisfying ∀ v ∈ L 2 ( Ω ) l . ( Au , v ) Ω = ( f , v ) Weak Petrov-Galerkin form (Unbroken) Find u ∈ L 2 ( Ω ) m satisfying ( u , A ∗ v ) Ω = ( f , v ) Ω ∀ v ∈ V ∗ . This form is not amenable to DPG discretization! Jay Gopalakrishnan 14/28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend