schauder estimates for non local operators franziska k
play

Schauder estimates for non-local operators Franziska K uhn - PowerPoint PPT Presentation

Introduction Definitions Results Outlook Schauder estimates for non-local operators Franziska K uhn (Institut de Math ematiques de Toulouse) Probability and Analysis 2019 May 23, 2019 Franziska K uhn (IMT Toulouse) Schauder


  1. Introduction Definitions Results Outlook Schauder estimates for non-local operators Franziska K¨ uhn (Institut de Math´ ematiques de Toulouse) Probability and Analysis 2019 May 23, 2019 Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  2. Introduction Definitions Results Outlook Outline 1 Introduction 2 Definitions 3 Schauder estimates for L´ evy operators 4 Outlook: Schauder estimates for L´ evy-type operators Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  3. Introduction Definitions Results Outlook Introduction Aim: Study pointwise regularity of solutions to the equation Af = g where A is an integro-differential operator ( → infinitesimal generator of a L´ evy(-type) process). Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  4. Introduction Definitions Results Outlook Introduction Aim: Study pointwise regularity of solutions to the equation Af = g where A is an integro-differential operator ( → infinitesimal generator of a L´ evy(-type) process). Questions: How regular is f ∈ D ( A ) ? If g has a certain regularity then what additional information do we get on the regularity of f ? Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  5. Introduction Definitions Results Outlook Introduction Aim: Study pointwise regularity of solutions to the equation Af = g where A is an integro-differential operator ( → infinitesimal generator of a L´ evy(-type) process). Questions: How regular is f ∈ D ( A ) ? If g has a certain regularity then what additional information do we get on the regularity of f ? Formally, f = A − 1 g i.e. we are interested in the smoothing properties of A − 1 . Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  6. Introduction Definitions Results Outlook Example I Laplacian: Af ( x ) = 1 2∆ f ( x ) . . . appears as infinitesimal generator of Brownian motion. Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  7. Introduction Definitions Results Outlook Example I Laplacian: Af ( x ) = 1 2∆ f ( x ) . . . appears as infinitesimal generator of Brownian motion. Known: If f ∈ D ( A ) then f is “almost twice differentiable”: ∥ f ∥ C 2 b ( R d ) ≤ M (∥ f ∥ ∞ + ∥ Af ∥ ∞ ) . Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  8. Introduction Definitions Results Outlook Example I Laplacian: Af ( x ) = 1 2∆ f ( x ) . . . appears as infinitesimal generator of Brownian motion. Known: If f ∈ D ( A ) then f is “almost twice differentiable”: ∥ f ∥ C 2 b ( R d ) ≤ M (∥ f ∥ ∞ + ∥ Af ∥ ∞ ) . b ( R d ) ⊂ C k b ( R d ) for k ∈ N and C α b ( R d ) = C α b ( R d ) for α ∉ N C k Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  9. Introduction Definitions Results Outlook Example I Laplacian: Af ( x ) = 1 2∆ f ( x ) . . . appears as infinitesimal generator of Brownian motion. Known: If f ∈ D ( A ) then f is “almost twice differentiable”: ∥ f ∥ C 2 b ( R d ) ≤ M (∥ f ∥ ∞ + ∥ Af ∥ ∞ ) . If Af = g ∈ C κ b ( R d ) for some κ > 0 then ∥ f ∥ C 2 + κ ( R d ) ≤ M κ (∥ f ∥ ∞ + ∥ Af ∥ C κ b ( R d ) ) . b b ( R d ) ⊂ C k b ( R d ) for k ∈ N and C α b ( R d ) = C α b ( R d ) for α ∉ N C k Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  10. Introduction Definitions Results Outlook Example II Fractional Laplacian: Af ( x ) = −(− ∆ ) α / 2 f ( x ) ∶= c ∫ y ≠ 0 ( f ( x + y ) − f ( x ) − ∇ f ( x ) y 1 ( 0 , 1 ) (∣ y ∣)) 1 ∣ y ∣ d + α dy . . . appears as infinitesimal generator of isotropic α -stable L´ evy process. Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  11. Introduction Definitions Results Outlook Example II Fractional Laplacian: Af ( x ) = −(− ∆ ) α / 2 f ( x ) ∶= c ∫ y ≠ 0 ( f ( x + y ) − f ( x ) − ∇ f ( x ) y 1 ( 0 , 1 ) (∣ y ∣)) 1 ∣ y ∣ d + α dy . . . appears as infinitesimal generator of isotropic α -stable L´ evy process. Known: If f ∈ D ( A ) then ∥ f ∥ C α b ( R d ) ≤ M (∥ f ∥ ∞ + ∥ Af ∥ ∞ ) . Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  12. Introduction Definitions Results Outlook Example II Fractional Laplacian: Af ( x ) = −(− ∆ ) α / 2 f ( x ) ∶= c ∫ y ≠ 0 ( f ( x + y ) − f ( x ) − ∇ f ( x ) y 1 ( 0 , 1 ) (∣ y ∣)) 1 ∣ y ∣ d + α dy . . . appears as infinitesimal generator of isotropic α -stable L´ evy process. Known: If f ∈ D ( A ) then ∥ f ∥ C α b ( R d ) ≤ M (∥ f ∥ ∞ + ∥ Af ∥ ∞ ) . If Af = g ∈ C κ b ( R d ) for some κ > 0 then ∥ f ∥ C α + κ ( R d ) ≤ M κ (∥ f ∥ ∞ + ∥ Af ∥ C κ b ( R d ) ) . b Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  13. Introduction Definitions Results Outlook Infinitesimal generator . . . appears in the study of Markov processes. Idea: P t f − f Af = d dt P t f ∣ = lim t t → 0 t = 0 where P t f ( x ) ∶= E x f ( X t ) = E 0 f ( x + X t ) . L´ evy is the semigroup. Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  14. Introduction Definitions Results Outlook Infinitesimal generator . . . appears in the study of Markov processes. Idea: P t f − f Af = d dt P t f ∣ = lim t t → 0 t = 0 where P t f ( x ) ∶= E x f ( X t ) = E 0 f ( x + X t ) . L´ evy is the semigroup. Hence, E x f ( X t ) ≈ f ( x ) + tAf ( x ) for small t i.e. A describes small-time asymptotics. Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  15. Introduction Definitions Results Outlook Generator of a L´ evy process Theorem Let ( X t ) t ≥ 0 be a L´ evy process. If f ∈ C ∞ c ( R d ) then Af ( x ) = b ⋅ ∇ f ( x ) + 1 2 tr ( Q ⋅ ∇ 2 f ( x )) + ∫ y ≠ 0 ( f ( x + y ) − f ( x ) − ∇ f ( x ) ⋅ y 1 ( 0 , 1 ) (∣ y ∣)) ν ( dy ) Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  16. Introduction Definitions Results Outlook Generator of a L´ evy process Theorem Let ( X t ) t ≥ 0 be a L´ evy process. If f ∈ C ∞ c ( R d ) then Af ( x ) = b ⋅ ∇ f ( x ) + 1 2 tr ( Q ⋅ ∇ 2 f ( x )) + ∫ y ≠ 0 ( f ( x + y ) − f ( x ) − ∇ f ( x ) ⋅ y 1 ( 0 , 1 ) (∣ y ∣)) ν ( dy ) evy triplet ( b , Q ,ν ) consists of where the L´ b ∈ R d (drift vector), Q ∈ R d × d symmetric and positive semidefinite (diffusion matrix) a measure ν with ∫ y ≠ 0 min { 1 , ∣ y ∣ 2 } ν ( dy ) < ∞ (L´ evy measure) Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  17. Introduction Definitions Results Outlook Generator of a L´ evy process Theorem Let ( X t ) t ≥ 0 be a L´ evy process. If f ∈ C ∞ c ( R d ) then Af ( x ) = b ⋅ ∇ f ( x ) + 1 2 tr ( Q ⋅ ∇ 2 f ( x )) + ∫ y ≠ 0 ( f ( x + y ) − f ( x ) − ∇ f ( x ) ⋅ y 1 ( 0 , 1 ) (∣ y ∣)) ν ( dy ) evy triplet ( b , Q ,ν ) consists of where the L´ b ∈ R d (drift vector), Q ∈ R d × d symmetric and positive semidefinite (diffusion matrix) a measure ν with ∫ y ≠ 0 min { 1 , ∣ y ∣ 2 } ν ( dy ) < ∞ (L´ evy measure) Equivalent characterization via the characteristic exponent ψ ( ξ ) = − ib ⋅ ξ + 1 2 ξ ⋅ Q ξ + ∫ y ≠ 0 ( 1 − e iy ⋅ ξ + iy ⋅ ξ 1 ( 0 , 1 ) (∣ y ∣)) ν ( dy ) Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  18. Introduction Definitions Results Outlook H¨ older–Zygmund space ⎧ ⎫ ⎪ ⎪ ∣ ∆ k h f ( x )∣ ⎪ ⎪ b ( R d ) ∶= ⎨ f ∈ C b ( R d ) ; ∥ f ∥ C α b ( R d ) ∶= ∥ f ∥ ∞ + sup < ∞ ⎬ C α ⎪ ⎪ x ∈ R d sup ∣ h ∣ α ⎪ ⎪ ⎩ ⎭ 0 < ∣ h ∣ ≤ 1 where k = ⌊ α ⌋ + 1 and ∆ h ∶= f ( x + h ) − f ( x ) h f ( x ) ∶= ∆ h ( ∆ k − 1 f )( x ) . ∆ k h Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  19. Introduction Definitions Results Outlook H¨ older–Zygmund space ⎧ ⎫ ⎪ ⎪ ∣ ∆ k h f ( x )∣ ⎪ ⎪ b ( R d ) ∶= ⎨ f ∈ C b ( R d ) ; ∥ f ∥ C α b ( R d ) ∶= ∥ f ∥ ∞ + sup < ∞ ⎬ C α ⎪ ⎪ x ∈ R d sup ∣ h ∣ α ⎪ ⎪ ⎩ ⎭ 0 < ∣ h ∣ ≤ 1 where k = ⌊ α ⌋ + 1 and ∆ h ∶= f ( x + h ) − f ( x ) h f ( x ) ∶= ∆ h ( ∆ k − 1 f )( x ) . ∆ k h Theorem b ( R d ) ⊂ C k b ( R d ) for all k ∈ N , 1 C k b ( R d ) = C α b ( R d ) for α ∈ ( 0 , ∞)/ N . 2 C α Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  20. Introduction Definitions Results Outlook Schauder estimates for L´ evy generators How to obtain Schauder estimates for solutions to Af = g where A is the generator of a L´ evy process? Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

  21. Introduction Definitions Results Outlook Schauder estimates for L´ evy generators How to obtain Schauder estimates for solutions to Af = g where A is the generator of a L´ evy process? Known results: Bass ’09, Ros-Oton & Serra ’16: stable operators Bae & Kassmann ’15: ν ( dy ) = 1 /(∣ y ∣ d ϕ ( y )) classical theory for pseudo-differential operators: ∫ ∣ y ∣ > 1 ∣ y ∣ n ν ( dy ) < ∞ for n ≫ 1 Franziska K¨ uhn (IMT Toulouse) Schauder estimates for non-local operators

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend