phase transition and axial anomaly in the 3 flavor chiral
play

Phase transition and axial anomaly in the 3-flavor chiral meson - PowerPoint PPT Presentation

Phase transition and axial anomaly in the 3-flavor chiral meson model Gergely Fej os Research Center for Nuclear Physics Osaka University Workshop on J-PARC hadron physics 2016 a 4th March, 2016 Gergely Fej os Phase transition and


  1. Phase transition and axial anomaly in the 3-flavor chiral meson model Gergely Fej˝ os Research Center for Nuclear Physics Osaka University Workshop on J-PARC hadron physics 2016 a 4th March, 2016 Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral meson

  2. Outline aaa Motivation Functional renormalization group Chiral (linear) sigma model and axial anomaly Numerical results Summary Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  3. Motivation Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  4. Motivation QCD Lagrangian with quarks and gluons: L = − 1 µν G µν a + ¯ ψ i ( i γ µ D µ − m ) ij ψ j 4 G a Approximate chiral symmetry for N f = 2 , 3 flavors: ψ L → e iT a θ a ψ R → e iT a θ a L ψ L , R ψ R [vector: θ L + θ R , axialvector: θ L − θ R ] Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  5. Motivation QCD Lagrangian with quarks and gluons: L = − 1 µν G µν a + ¯ ψ i ( i γ µ D µ − m ) ij ψ j 4 G a Approximate chiral symmetry for N f = 2 , 3 flavors: ψ L → e iT a θ a ψ R → e iT a θ a L ψ L , R ψ R [vector: θ L + θ R , axialvector: θ L − θ R ] Chiral symmetry is spontaneuously broken in the ground state: < ¯ ψ i ψ i > = < ¯ ψ i , R ψ i , L > + < ¯ ψ i , L ψ i , R > � = 0 SSB pattern: SU L ( N f ) × SU R ( N f ) − → SU V ( N f ) Anomaly: U A (1) is broken by instantons Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  6. Motivation QCD Lagrangian with quarks and gluons: L = − 1 µν G µν a + ¯ ψ i ( i γ µ D µ − m ) ij ψ j 4 G a Approximate chiral symmetry for N f = 2 , 3 flavors: ψ L → e iT a θ a ψ R → e iT a θ a L ψ L , R ψ R [vector: θ L + θ R , axialvector: θ L − θ R ] Chiral symmetry is spontaneuously broken in the ground state: < ¯ ψ i ψ i > = < ¯ ψ i , R ψ i , L > + < ¯ ψ i , L ψ i , R > � = 0 SSB pattern: SU L ( N f ) × SU R ( N f ) − → SU V ( N f ) Anomaly: U A (1) is broken by instantons Details of chiral symmetry restoration? Critical temperature? Axial anomaly? Is it recovered at the critical point? Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  7. Motivation Effective field theory of chiral symmetry breaking: − → three-flavor linear sigma model → M = T a ( s a + i π a ) − [pseudoscalar mesons: π, K , η, η ′ , scalar mesons: a 0 , κ, f 0 , σ ] ∂ µ M ∂ µ M † − µ 2 Tr ( MM † ) − g 1 9 [ Tr ( MM † )] 2 L = g 2 3 Tr ( MM † ) 2 − Tr [ H ( M + M † )] − a (det M + det M † ) − Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  8. Motivation Effective field theory of chiral symmetry breaking: − → three-flavor linear sigma model → M = T a ( s a + i π a ) − [pseudoscalar mesons: π, K , η, η ′ , scalar mesons: a 0 , κ, f 0 , σ ] ∂ µ M ∂ µ M † − µ 2 Tr ( MM † ) − g 1 9 [ Tr ( MM † )] 2 L = g 2 3 Tr ( MM † ) 2 − Tr [ H ( M + M † )] − a (det M + det M † ) − two independent quartic couplings: g 1 , g 2 explicit symmetry breaking: H = h 0 T 0 + h 8 T 8 ’t Hooft determinant breaks only the U A (1) symmetry Goal: take into account quantum- and thermal fluctuations to see the finite temperature behavior of the system Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  9. Functional renormalization group FRG: follows the idea of Wilsonian renormalization group � 1 � � � S [ φ ]+ � J φ + D φ e − 2 φ R k φ Z k [ J ] = R k : IR regulator function k 2 Requirements: 1., scale separation R k (q) (suppress modes q � k ) 2., R k − → ∞ if k − → ∞ 3., R k − → 0 if k − → 0 0 q 0 k Gradually moving k from Λ to 0, fluctuations are getting integrated out Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  10. Functional renormalization group scale-dependent effective action: � φ − 1 � Γ k [¯ J ¯ φ R k ¯ ¯ φ ] = − log Z k [ J ] − φ 2 ⇒ Γ k =Λ [¯ φ ] = S [¯ − → k ≈ Λ: no fluctuations φ ] ⇒ Γ k =0 [¯ φ ] = Γ 1 PI [¯ → k = 0: all fluctuations φ ] − the scale-dependent effective action interpolates between classical- and quantum effective actions Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  11. Chiral sigma model Flow of the effective action is described by the Wetterich equation: � ( T ) ∂ k Γ k = 1 ∂ k R k ( q , p )(Γ (2) + R k ) − 1 ( p , q ) 2 Tr k q , p → exact relation, functional integro-differential equation − − → approximation(s) needed Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  12. Chiral sigma model Flow of the effective action is described by the Wetterich equation: � ( T ) ∂ k Γ k = 1 ∂ k R k ( q , p )(Γ (2) + R k ) − 1 ( p , q ) 2 Tr k q , p → exact relation, functional integro-differential equation − − → approximation(s) needed Derivative expansion of Γ k : � � � − V k ( M ) + Z k ( M ) ∂ µ M † ∂ µ M + O ( ∂ 4 ) Γ k [ M ] = x Assumptions: U k ( M ) + Tr ( H ( M + M † )) + A k ( M )(det M + det M † ) V k ( M ) = Z k ( M ) 1 ≈ → U k : chiral symmetric part − − → A k : U A (1) breaking term, field dependent! Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  13. Chiral sigma model The model has 6 free parameters, which have to be fixed using experimental input → chiral symmetric parameters: µ 2 , g 1 , g 2 − − → explicit breaking terms: h 0 , h 8 → chiral anomaly parameter: a − Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  14. Chiral sigma model The model has 6 free parameters, which have to be fixed using experimental input → chiral symmetric parameters: µ 2 , g 1 , g 2 − − → explicit breaking terms: h 0 , h 8 → chiral anomaly parameter: a − First one fixes the explicit symmetry breaking using the PCAC relations: = − ∂ m 2 π a = ∂ µ J 5 µ Tr ( H ( M + M † )) a f a ˆ ( a = 1 , ... 8) a ∂θ a A → h 0 ≈ (286 MeV ) 3 , h 8 ≈ − (311 MeV ) 3 − Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  15. Chiral sigma model The model has 6 free parameters, which have to be fixed using experimental input → chiral symmetric parameters: µ 2 , g 1 , g 2 − − → explicit breaking terms: h 0 , h 8 → chiral anomaly parameter: a − First one fixes the explicit symmetry breaking using the PCAC relations: = − ∂ m 2 π a = ∂ µ J 5 µ Tr ( H ( M + M † )) a f a ˆ ( a = 1 , ... 8) a ∂θ a A → h 0 ≈ (286 MeV ) 3 , h 8 ≈ − (311 MeV ) 3 − µ 2 , g 1 , g 2 are fixed by the light spectra (i.e. π , K , and σ ) anomaly parameter a is tuned so that η and η ′ masses get close to their experimental values at T = 0 Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  16. Chiral sigma model Functions need to be determined: → effective potential V k ( M ) − − → anomaly function A k ( M ) Step I.: solve the renormalization group equations for V k and A k at T = 0 to determine the model parameters ( µ 2 , g 1 , g 2 , a ) Step II.: solve the same equations at T > 0 to get: − → thermal effects on the mesonic spectrum − → details of symmetry restoration → finite temperature behavior of the U A (1) anomaly − Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  17. Numerical results without anomaly f 0 1000 κ 800 masses [MeV] a 0 600 η ' 400 K σ 200 π , η 0 0 50 100 150 200 250 300 350 400 T [MeV] Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  18. Numerical results with anomaly f 0 1000 κ η ' masses [MeV] a 0 800 600 η K σ 400 200 π 0 100 200 300 400 500 T [MeV] Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  19. Numerical results 8 7 T = 1.2 T c T = 0.7 T c T = 0 6 |A| [GeV] 5 4 3 2 0 100 200 300 √ <M + M> [MeV] Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  20. Numerical results 8 7.5 7 anomaly [GeV] 6.5 6 5.5 5 4.5 |A[0]| |A[v min ]| 4 0 100 200 300 400 500 T [MeV] Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  21. Numerical results 1 0.8 strange v s/ns (T)/v s/ns (0) 0.6 0.4 non strange 0.2 0 0 100 200 300 400 500 T [MeV] dashed: without anomaly, solid: with anomaly Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

  22. Summary Thermal properties of strongly interacting matter via the three-flavor linear sigma model Fluctuations (quantum and thermal) have been included using the functional renormalization group (FRG) approach − → neglecting the change in the wavefunction renormalization − → derivative expansion up to next-to-leading order Results: → thermal evolution of the mass spectrum − − → evaporation of the condensate ( v ns : yes, v s : no) → temperature dependence of the U A (1) anomaly factor − Most important findings: → mass spectrum might not be useful for U A (1) − − → meson fluctuations strengthen the anomaly Gergely Fej˝ os Phase transition and axial anomaly in the 3-flavor chiral...

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend