s tr t s r r r s p rt
play

s trts r - PowerPoint PPT Presentation

s trts r r r s Prt tr rt


  1. ❙❦❡✇✲◆♦r♠❛❧ ❉❛t❛ ❙✉♣♣♦s❡ ✇❡ ❣❡♥❡r❛t❡ ❞❛t❛ ❢r♦♠ ❛ s❦❡✇✲♥♦r♠❛❧ ❞✐str✐❜✉t✐♦♥ ✶ ❙◆ ( µ, ω ✷ , α ) ✱ ✇❤❡r❡ µ ∈ ℜ ✱ ω > ✵✱ ❛♥❞ α ∈ ℜ ❛r❡ ❧♦❝❛t✐♦♥✱ s❝❛❧❡✱ ❛♥❞ s❦❡✇♥❡ss ♣❛r❛♠❡t❡rs α > ✵ ⇒ ♣♦s✐t✐✈❡ s❦❡✇♥❡ss✱ α < ✵ ⇒ ♥❡❣❛t✐✈❡ s❦❡✇♥❡ss✱ ❛♥❞ ✇❤❡♥ α = ✵✱ t❤❡ ❞❡♥s✐t② r❡❞✉❝❡s t♦ ❛ s②♠♠❡tr✐❝ ♥♦r♠❛❧ ❞✐str✐❜✉t✐♦♥ ❋♦r ❞❡t❛✐❧s ♦♥ ❇❛②❡s✐❛♥ ❛♣♣r♦❛❝❤❡s t♦ ✜tt✐♥❣ ❙◆ ♠♦❞❡❧s✱ s❡❡ ❋rü❤✇✐rt❤✲❙❝❤♥❛tt❡r ❛♥❞ P②♥❡ ✭✷✵✶✵✮ ❛♥❞ ◆❡❡❧♦♥ ❡t ❛❧✳ ✭✷✵✶✺✮ ❋♦r ♥♦✇✱ s✉♣♣♦s❡ ✇❡ ✐❣♥♦r❡ s❦❡✇♥❡ss ❛♥❞ ✜t ❛♥ ♦r❞✐♥❛r② ❧✐♥❡❛r r❡❣r❡ss✐♦♥ t♦ t❤❡ ❞❛t❛ ❙❡❡ ❘❡s✐❞✉❛❧ ❉✐❛❣♥♦st✐❝s ✇✐t❤ ❙◆ ❉❛t❛✳r ❢♦r ❞❡t❛✐❧s ✶ ❖✬❍❛❣❛♥ ❛♥❞ ▲❡♦♥❛r❞ ✭✶✾✼✻✮❀ ❆③③❛❧✐♥✐✱ ✶✾✽✺ ✶✶ ✴ ✶✻✵

  2. P❧♦ts ♦❢ ❙t❛♥❞❛r❞✐③❡❞ ❘❡s✐❞✉❛❧s True Errors (e) Density of Standardized Residuals α = −5 MLE 0.4 0.15 ω = 4 Bayes 0.3 0.10 Density Density 0.2 0.05 0.1 0.00 0.0 −15 −10 −5 0 −4 −2 0 2 y Standardized Residual QQ Plot of Standardized Residuals 3 MLE ● ● Bayes 2 ● Observed Quantile ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 1 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● −1 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● −2 ● ● ●● ●● −3 ● ● −3 −2 −1 0 1 2 3 Normal Quantile ✶✷ ✴ ✶✻✵

  3. Pr♦❜✐t ❛♥❞ ▲♦❣✐t ▼♦❞❡❧s ❢♦r ❇✐♥❛r② ❉❛t❛ ∗ ❈♦♥s✐❞❡r t❤❡ ❢♦❧❧♦✇✐♥❣ ♣r♦❜✐t ♠♦❞❡❧ ❢♦r ❛ ❞✐❝❤♦t♦♠♦✉s ♦✉t❝♦♠❡ Y i ✿ Φ − ✶ [ Pr ( Y i = ✶ )] ① T = i β , i = ✶ , . . . , n , ✇❤❡r❡ Φ( · ) ❞❡♥♦t❡s t❤❡ ❈❉❋ ♦❢ ❛ st❛♥❞❛r❞ ♥♦r♠❛❧ r❛♥❞♦♠ ✈❛r✐❛❜❧❡ ❲❡ ❝❛♥ r❡♣r❡s❡♥t t❤❡ ♠♦❞❡❧ ✈✐s✲à✲✈✐s ❛ ❧❛t❡♥t ✈❛r✐❛❜❧❡ Z i s✉❝❤ t❤❛t ◆ ( ① T ∼ i β , ✶ ) ❛♥❞ Z i Y i = ✶ ⇐ ⇒ Z i > ✵ ✐♠♣❧②✐♥❣ t❤❛t Pr ( Z i > ✵ ) = Φ( ① T Pr ( Y i = ✶ ) = i β ) ✶✸ ✴ ✶✻✵

  4. ▲❛t❡♥t ❱❛r✐❛❜❧❡ ■♥t❡r♣r❡t❛t✐♦♥ ♦❢ Pr♦❜✐t ▼♦❞❡❧ 0.4 0.3 f(z i ) 0.2 Pr(Z i > 0) = Pr(Y i = 1) 0.1 0.0 T β x i −2 0 2 4 z i ✶✹ ✴ ✶✻✵

  5. ❆❧❜❡rt ❛♥❞ ❈❤✐❜ ✭✶✾✾✸✮ ❉❛t❛✲❆✉❣♠❡♥t❡❞ ❙❛♠♣❧❡r ❆❧❜❡rt ❛♥❞ ❈❤✐❜ ✭✶✾✾✸✮ t❛❦❡ ❛❞✈❛♥t❛❣❡ ♦❢ t❤✐s ❧❛t❡♥t ✈❛r✐❛❜❧❡ str✉❝t✉r❡ t♦ ❞❡✈❡❧♦♣ ❛♥ ❡✣❝✐❡♥t ❞❛t❛✲❛✉❣♠❡♥t❡❞ ●✐❜❜s s❛♠♣❧❡r ❢♦r ♣r♦❜✐t r❡❣r❡ss✐♦♥ ❉❛t❛ ❛✉❣♠❡♥t❛t✐♦♥ ✐s ❛ ♠❡t❤♦❞ ❜② ✇❤✐❝❤ ✇❡ ✐♥tr♦❞✉❝❡ ❛❞❞✐t✐♦♥❛❧ ✭♦r ✏❛✉❣♠❡♥t❡❞✑✮ ✈❛r✐❛❜❧❡s✱ ❩ = ( Z ✶ , . . . , Z n ) T ✱ ❛s ♣❛rt ♦❢ t❤❡ ●✐❜❜s s❛♠♣❧❡r t♦ ❢❛❝✐❧✐t❛t❡ s❛♠♣❧✐♥❣ ❉❛t❛ ❛✉❣♠❡♥t❛t✐♦♥ ✐s ✉s❡❢✉❧ ✇❤❡♥ t❤❡ ❝♦♥❞✐t✐♦♥❛❧ ❞❡♥s✐t② π ( β | ② ) ✐s ✐♥tr❛❝t❛❜❧❡✱ ❜✉t t❤❡ ❥♦✐♥t ♣♦st❡r✐♦r π ( β , ③ | ② ) ✐s ❡❛s② t♦ s❛♠♣❧❡ ❢r♦♠ ✈✐❛ ●✐❜❜s✱ ✇❤❡r❡ ③ ✐s ❛♥ n × ✶ ✈❡❝t♦r ♦❢ r❡❛❧✐③❛t✐♦♥s ♦❢ ❩ ✶✺ ✴ ✶✻✵

  6. ❉❛t❛ ❆✉❣♠❡♥t❛t✐♦♥ ❙❛♠♣❧❡r ■♥ ♣❛rt✐❝✉❧❛r✱ s✉♣♣♦s❡ ✐t✬s str❛✐❣❤t❢♦r✇❛r❞ t♦ s❛♠♣❧❡ ❢r♦♠ t❤❡ ❢✉❧❧ ❝♦♥❞✐t✐♦♥❛❧s π ( β | ② , ③ ) ❛♥❞ π ( ③ | ② , β ) ❚❤❡♥ ✇❡ ❝❛♥ ❛♣♣❧② ●✐❜❜s s❛♠♣❧✐♥❣ t♦ ♦❜t❛✐♥ t❤❡ ❥♦✐♥t ♣♦st❡r✐♦r π ( β , ③ | ② ) ❆❢t❡r ❝♦♥✈❡r❣❡♥❝❡✱ t❤❡ s❛♠♣❧❡s ♦❢ β ✱ { β ( ✶ ) , . . . , β ( T ) } ✱ ✇✐❧❧ ❝♦♥st✐t✉t❡ ❛ ▼♦♥t❡ ❈❛r❧♦ s❛♠♣❧❡ ❢r♦♠ π ( β | ② ) ◆♦t❡ t❤❛t ✐❢ β ❛♥❞ ❨ ❛r❡ ❝♦♥❞✐t✐♦♥❛❧❧② ✐♥❞❡♣❡♥❞❡♥t ❣✐✈❡♥ ❩ ✱ s♦ t❤❛t π ( β | ② , ③ ) = π ( β | ③ ) ✱ t❤❡♥ t❤❡ s❛♠♣❧❡r ♣r♦❝❡❡❞s ✐♥ t✇♦ st❛❣❡s✿ ✶ ❉r❛✇ ③ ❢r♦♠ π ( ③ | ② , β ) ✷ ❉r❛✇ β ❢r♦♠ π ( β | ③ ) ✶✻ ✴ ✶✻✵

  7. ●✐❜❜s ❙❛♠♣❧❡r ❢♦r Pr♦❜✐t ▼♦❞❡❧ ∗ ❚❤❡ ❞❛t❛ ❛✉❣♠❡♥t❡❞ s❛♠♣❧❡r ♣r♦♣♦s❡❞ ❜② ❆❧❜❡rt ❛♥❞ ❈❤✐❜ ♣r♦❝❡❡❞s ❜② � � β ✵ , ❚ − ✶ ❛ss✐❣♥✐♥❣ ❛ ◆ p ♣r✐♦r t♦ β ❛♥❞ ❞❡✜♥✐♥❣ t❤❡ ♣♦st❡r✐♦r ✈❛r✐❛♥❝❡ ✵ � � − ✶ ❚ ✵ + ❳ T ❳ ♦❢ β ❛s ❱ = ◆♦t❡ t❤❛t ❜❡❝❛✉s❡ ❱❛r ( Z i ) = ✶✱ ✇❡ ❝❛♥ ❞❡✜♥❡ ❱ ♦✉ts✐❞❡ t❤❡ ●✐❜❜s ❧♦♦♣ ◆❡①t✱ ✇❡ ✐t❡r❛t❡ t❤r♦✉❣❤ t❤❡ ❢♦❧❧♦✇✐♥❣ ●✐❜❜s st❡♣s✿ ✶ ❋♦r i = ✶ , . . . , n ✱ s❛♠♣❧❡ z i ❢r♦♠ ❛ ◆ ( ① T i β , ✶ ) ❞✐str✐❜✉t✐♦♥ tr✉♥❝❛t❡❞ ❜❡❧♦✇ ✭❛❜♦✈❡✮ ❜② ✵ ❢♦r y i = ✶ ( y i = ✵ ) � � ❚ ✵ β ✵ + ❳ T ③ ✷ ❙❛♠♣❧❡ β ❢r♦♠ ◆ p ( ♠ , ❱ ) ✱ ✇❤❡r❡ ♠ = ❱ ❛♥❞ ❱ ✐s ❞❡✜♥❡❞ ❛❜♦✈❡ ◆♦t❡✿ ❈♦♥❞✐t✐♦♥❛❧ ♦♥ ❩ ✱ β ✐s ✐♥❞❡♣❡♥❞❡♥t ♦❢ ❨ ✱ s♦ ✇❡ ❝❛♥ ✇♦r❦ s♦❧❡❧② ✇✐t❤ t❤❡ ❛✉❣♠❡♥t❡❞ ❧✐❦❡❧✐❤♦♦❞ ✇❤❡♥ ✉♣❞❛t✐♥❣ β ❙❡❡ Pr♦❜✐t✳r ❢♦r ❞❡t❛✐❧s ✶✼ ✴ ✶✻✵

  8. ❘ ❈♦❞❡ ❢♦r Pr♦❜✐t ●✐❜❜s ❙❛♠♣❧❡r Gibbs for Probit Regression Model # Priors beta0<- rep (0,p) # Prior mean of beta (of dimension p) T0<- diag (.01,p) # Prior precision of beta # Inits beta<- rep (0,p) z<- rep (0,n) # Latent normal variables ns<- table (y) # Category sample sizes # MCMC info analogous to linear reg. code # Posterior var of beta -- Note: can calculate outside of loop vbeta<- solve (T0+ crossprod (X,X)) ######### # Gibbs # ######### tmp<- proc.time () # Store current time for (i in 1:nsim){ # Update latent normals, z, from truncated normal using inverse-CDF method muz<-X%*%beta z[y==0]<- qnorm ( runif (ns[1],0, pnorm (0,muz[y==0],1)),muz[y==0],1) z[y==1]<- qnorm ( runif (ns[2], pnorm (0,muz[y==1],1),1),muz[y==1],1) # Alternatively, can use rtnorm function from msm package -- this is slower # z[y==0]<-rtnorm(n0,muz[y==0],1,-Inf,0) # z[y==1]<-rtnorm(n1,muz[y==1],1,0,Inf) # Update beta mbeta <- vbeta%*%(T0%*%beta0+ crossprod (X,z)) # Posterior mean of beta beta<- c ( rmvnorm (1,mbeta,vbeta)) ################# # Store Results # ################# if (i> burn & i%%thin==0) { j<-(i-burn)/thin Beta[j,]<-beta } if (i%%100==0) print (i) } proc.time ()-tmp # MCMC run time -- 0.64 seconds to run 1000 iterations with n=1000 ✶✽ ✴ ✶✻✵

  9. ❊①❛♠♣❧❡ ❚❤❡ ♣r♦❣r❛♠ Pr♦❜✐t✳r ✜ts t❤❡ ❢♦❧❧♦✇✐♥❣ ♣r♦❜✐t ♠♦❞❡❧✿ ❇❡r♥ ( π i ) Y i ∼ Φ − ✶ ( π i ) = β ✵ + β ✶ x i , i = ✶ , . . . , ✶✵✵✵ . ❚❤❡ r❡s✉❧ts✱ ❜❛s❡❞ ♦♥ ✶✵✵✵ ✐t❡r❛t✐♦♥s ✇✐t❤ ❛ ❜✉r♥✲✐♥ ♦❢ ✺✵✵✱ ❛r❡✿ ❚❛❜❧❡ ✷✿ ❘❡s✉❧ts ❢♦r Pr♦❜✐t ▼♦❞❡❧✳ ❚r✉❡ P♦st❡r✐♦r ▼❡❛♥ ✭❙❉✮ † P❛r❛♠❡t❡r ❱❛❧✉❡ ▼▲❊ ✭❙❊✮ β ✵ − ✵ . ✺ − ✵ . ✻✹ ( ✵ . ✵✼ ) − ✵ . ✻✹ ( ✵ . ✵✼ ) β ✶ ✵ . ✺ ✵ . ✺✺ ( ✵ . ✵✹ ) ✵ . ✺✻ ( ✵ . ✵✹ ) † ❇❛s❡❞ ♦♥ ❆❧❜❡rt ❛♥❞ ❈❤✐❜ ❞❛t❛ ❛✉❣♠❡♥t❛t✐♦♥ s❛♠♣❧❡r✳ ✶✾ ✴ ✶✻✵

  10. t ✲▲✐♥❦ ▼♦❞❡❧s ❆❧❜❡rt ❛♥❞ ❈❤✐❜ ❛❧s♦ ❞✐s❝✉ss ❡①t❡♥s✐♦♥s t♦ s♦✲❝❛❧❧❡❞ t ✲❧✐♥❦ ♠♦❞❡❧s t❤❛t ❛❧❧♦✇ Z t♦ ❛ss✉♠❡ ❛ t ✲❞✐str✐❜✉t✐♦♥ ✇✐t❤ ❤❡❛✈✐❡r t❛✐❧s t❤❛♥ t❤❡ ♥♦r♠❛❧ ❞✐str✐❜✉t✐♦♥ ❚❤❡ ❝❤♦✐❝❡ ♦❢ ❞❢ ✇✐❧❧ ❝♦rr❡s♣♦♥❞ t♦ ❞✐✛❡r❡♥t ❧✐♥❦ ❢✉♥❝t✐♦♥s ❆ t ✶ ❞✐str✐❜✉t✐♦♥ ❝♦rr❡s♣♦♥❞s t♦ ❛ ❈❛✉❝❤② ❧✐♥❦ ❆ t ✽ ❞✐str✐❜✉t✐♦♥ ❛♣♣r♦①✐♠❛t❡s ❛ ✭s❝❛❧❡❞✮ ❧♦❣✐st✐❝ ❞✐str✐❜✉t✐♦♥ ❆♥❞✱ ✐♥ t❤❡ ❧✐♠✐t✱ t ∞ ✐♠♣❧✐❡s ❛ ♣r♦❜✐t ❧✐♥❦ ❇② ✈❛r②✐♥❣ t❤❡ ❞❢s✱ ✇❡ ♣❡r♠✐t ✢❡①✐❜✐❧✐t② ✐♥ t❤❡ ❝❤♦✐❝❡ ♦❢ ❧✐♥❦ ❢✉♥❝t✐♦♥ ✷✵ ✴ ✶✻✵

  11. ▲❛t❡♥t ❱❛r✐❛❜❧❡ ■♥t❡r♣r❡t❛t✐♦♥ ♦❢ t ✲▲✐♥❦ ▼♦❞❡❧ 0.4 T β ) t 3 (x i T β ,1) N(x i 0.3 f(z i ) 0.2 0.1 Pr(Z i > 0) = Pr(Y i = 1) 0.0 0 T β x i z i ✷✶ ✴ ✶✻✵

  12. t ✲▲✐♥❦ ✈s ▲♦❣✐st✐❝ ◗✉❛♥t✐❧❡s ■♥ ♣❛rt✐❝✉❧❛r✱ ❛ t ✽ / ✵ . ✻✸✹ ❛♣♣r♦①✐♠❛t❡s ❛ ❧♦❣✐st✐❝ ❞✐str✐❜✉t✐♦♥ t 3 t 8 t 16 Logistic*0.634 5 logistic quantile 0 −5 −4 −2 0 2 4 t quantile ✷✷ ✴ ✶✻✵

  13. ●✐❜❜s ❙❛♠♣❧❡r ❢♦r t❤❡ t ✲▲✐♥❦ ▼♦❞❡❧ ∗ ❘❡❝❛❧❧ t❤❛t ❛ t ✲❞✐str✐❜✉t✐♦♥ ❛r✐s❡s ❛s ❛ s❝❛❧❡❞ ♠✐①t✉r❡ ♦❢ ♥♦r♠❛❧s✱ ✇❤❡r❡ t❤❡ s❝❛❧❡ ✭✐✳❡✳✱ ✈❛r✐❛♥❝❡✮ ♣❛r❛♠❡t❡r ❢♦❧❧♦✇s ❛♥ ■● ❞✐str✐❜✉t✐♦♥ ❊q✉✐✈❛❧❡♥t❧②✱ t❤❡ ♣r❡❝✐s✐♦♥ ♦❢ t❤❡ ♥♦r♠❛❧ ✈❛r✐❛❜❧❡s ✐s ❣❛♠♠❛ ■♥ ♣❛rt✐❝✉❧❛r✱ ❛ t ν r❛♥❞♦♠ ✈❛r✐❛❜❧❡✱ Z i ( i = ✶ , . . . , n ) ✱ ❝❛♥ ❜❡ ❣❡♥❡r❛t❡❞ ❜② ✶ ●❡♥❡r❛t✐♥❣ λ i ❢r♦♠ ●❛ ( ν/ ✷ , ν/ ✷ ) ✭♣❛r❛♠❡t❡r✐③❡❞ ❛s r❛t❡ ✮ � � i β , λ − ✶ ① T ✷ ●❡♥❡r❛t✐♥❣ Z i | λ i ❢r♦♠ ◆ i ▼❛r❣✐♥❛❧❧②✱ Z i ✐s ❞✐str✐❜✉t❡❞ ❛s t ν ( ① T i β ) ❛♥❞ t❤❡ ♦r✐❣✐♥❛❧ ❜✐♥❛r② Y i ✐s ♠♦❞❡❧❡❞ ✉s✐♥❣ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ t ν ✲❧✐♥❦ ❢✉♥❝t✐♦♥ ✷✸ ✴ ✶✻✵

  14. ●✐❜❜s ❙❛♠♣❧❡r ❢♦r t❤❡ t ✲▲✐♥❦ ▼♦❞❡❧ ∗ ❚❤✐s ❧❡❛❞s t♦ t❤❡ ❢♦❧❧♦✇✐♥❣ ♠♦❞✐✜❝❛t✐♦♥ ❢♦r t❤❡ ♣r♦❜✐t ●✐❜❜s s❛♠♣❧❡r ✶ ❋♦r i = ✶ , . . . , n ✱ s❛♠♣❧❡ z i ❢r♦♠ ✐ts tr✉♥❝❛t❡❞ ◆ ( ① T i β , λ − ✶ i ) ❞✐str✐❜✉t✐♦♥ ❛♥❛❧♦❣♦✉s t♦ t❤❡ ❡❛r❧✐❡r s❛♠♣❧❡r ✷ ❙❛♠♣❧❡ β ❢r♦♠ ◆ p ( ♠ , ❱ ) ✱ ✇❤❡r❡ � � − ✶ ❚ ✵ + ❳ T ❲ ❳ ❱ = � � ❚ ✵ β ✵ + ❳ T ❲ ③ ♠ = ❱ ✭❛♥❛❧♦❣♦✉s t♦ ❲▲❙✮ ❲ = ❞✐❛❣ ( λ i ) � � ( ν + ✶ ) / ✷ , ( ν + ( z i − ① T i β ) ✷ ) / ✷ ✸ ❋♦r i = ✶ , . . . , n ✱ s❛♠♣❧❡ λ i ❢r♦♠ ●❛ ✹ ❖♣t✐♦♥❛❧❧②✱ ♣❧❛❝❡ ❛ ❞✐s❝r❡t❡ ✉♥✐❢♦r♠ ♣r✐♦r ♦♥ ν ❛♥❞ ❛♣♣❧② t❤❡ ❞✐s❝r❡t❡ ✈❡rs✐♦♥ ♦❢ ❇❛②❡s✬ ❚❤❡♦r❡♠ t♦ ❣❡t t❤❡ ♣♦st❡r✐♦r ♣r♦❜❛❜✐❧✐t✐❡s ✺ ❋♦r t❤❡ ❧♦❣✐st✐❝ ❛♣♣r♦①✐♠❛t✐♦♥✱ s❡t ν = ✽ ❛♥❞ ❞✐✈✐❞❡ t❤❡ ♣♦st❡r✐♦r ♠❡❛♥s ❛♥❞ ❙❉s ❜② ✵✳✻✸✹ t♦ r❡❝♦✈❡r t❤❡ ❧♦❣✐st✐❝ r❡s✉❧ts ❙❡❡ t ✲▲✐♥❦ ▲♦❣✐t✳r ❢♦r ❞❡t❛✐❧s ✷✹ ✴ ✶✻✵

  15. ❘ ❈♦❞❡ ❢♦r t ✲▲✐♥❦ ▲♦❣✐st✐❝ ▼♦❞❡❧ Gibbs Sampler for t-Link Logit Model # A&C assign diffuse (improper) priors for beta, so no explicit specification # Initial Values lambda<- rep (1,n) # Weights nu<-8 # t df (8 ~ logistic) -- assume fixed z<- rep (0,n) # Latent z vector ns<- table (y) # Category sample szies ########### # Gibbs # ########### tmp<- proc.time () # Store current time for (i in 1:nsim) { # Update z using inverse-CDF method muz<-X%*%beta z[y==0]<- qnorm ( runif (ns[1],0, pnorm (0,muz[y==0], sqrt (1/lambda[y==0]))),muz[y==0], sqrt (1/lambda[y==0])) z[y==1]<- qnorm ( runif (ns[2], pnorm (0,muz[y==1], sqrt (1/lambda[y==1])),1),muz[y==1], sqrt (1/lambda[y==1])) vbeta<- solve ( crossprod ( sqrt (lambda)*X)) # Can no longer update outside Gibbs loop betahat<-vbeta%*%( crossprod (lambda*X,z)) beta<- c ( rmvnorm (1,betahat,vbeta)) # Update lambda lambda<- rgamma (n,(nu+1)/2,(nu+(z-X%*%beta)^2)/2) ################# # Store Results # ################# if (i> burn & i%%thin==0) { j<-(i-burn)/thin Beta[j,]<-beta } if (i%%100==0) print (i) } proc.time ()-tmp # MCMC run time -- 1 sec to run 1000 iterations with n=1000 # Results mbeta<- colMeans (Beta/.634) # Correction factor is 1/.634 sbeta<- apply (Beta/.634,2,sd) ✷✺ ✴ ✶✻✵

  16. ❊①❛♠♣❧❡ ❚❤❡ ♣r♦❣r❛♠ t ✲▲✐♥❦ ▲♦❣✐t✳r ❣❡♥❡r❛t❡s ✶✵✵✵ ♦❜s❡r✈❛t✐♦♥s ❢r♦♠ t❤❡ ❢♦❧❧♦✇✐♥❣ ❧♦❣✐st✐❝ ♠♦❞❡❧✿ ∼ ❇❡r♥ ( π i ) Y i ❧♦❣✐t ( π i ) = β ✵ + β ✶ x i , i = ✶ , . . . , ✶✵✵✵ . ❚❤❡ r❡s✉❧ts✱ ❜❛s❡❞ ♦♥ ✶✵✵✵ ✐t❡r❛t✐♦♥s ✇✐t❤ ❛ ❜✉r♥✲✐♥ ♦❢ ✺✵✵✱ ❛r❡✿ ❚❛❜❧❡ ✸✿ ❘❡s✉❧ts ❢♦r ▲♦❣✐st✐❝ ▼♦❞❡❧ ✇✐t❤ t ✲▲✐♥❦✳ ❚r✉❡ P♦st❡r✐♦r ▼❡❛♥ ✭❙❉✮ † P❛r❛♠❡t❡r ❱❛❧✉❡ ▼▲❊ ✭❙❊✮ β ✵ − ✶ − ✶ . ✵✽ ( ✵ . ✵✽ ) − ✶ . ✵✽ ( ✵ . ✵✽ ) β ✶ ✶ ✵ . ✾✷ ( ✵ . ✵✾ ) ✵ . ✾✸ ( ✵ . ✵✾ ) † ❇❛s❡❞ ♦♥ ❆❧❜❡rt ❛♥❞ ❈❤✐❜ t ✲❧✐♥❦ ♠♦❞❡❧✳ ✷✻ ✴ ✶✻✵

  17. ▲♦❣✐st✐❝ ❘❡❣r❡ss✐♦♥ ❯s✐♥❣ Pó❧②❛✲●❛♠♠❛ ▲❛t❡♥t ❱❛r✐❛❜❧❡s P♦❧s♦♥ ❡t ❛❧✳ ✭✷✵✶✷✮ ♣r♦♣♦s❡❞ ❛ ❛❧t❡r♥❛t✐✈❡ ●✐❜❜s s❛♠♣❧❡r ❢♦r ❧♦❣✐st✐❝ ❛♥❞ ♥❡❣❛t✐✈❡ ❜✐♥♦♠✐❛❧ ♠♦❞❡❧s ❚❤❡ ❛♣♣r♦❛❝❤ ✐♥tr♦❞✉❝❡s ❛ ✈❡❝t♦r ♦❢ ❧❛t❡♥t ✈❛r✐❛❜❧❡s✱ Z i ✱ t❤❛t ❛r❡ s❝❛❧❡ ♠✐①t✉r❡s ♦❢ ♥♦r♠❛❧s ✇✐t❤ ✐♥❞❡♣❡♥❞❡♥t Pó❧②❛✲●❛♠♠❛ ♣r❡❝✐s✐♦♥ t❡r♠s r❛t❤❡r t❤❛♥ ●❛♠♠❛ ♣r❡❝✐s✐♦♥ t❡r♠s ❛s ✐♥ t❤❡ t ✲❧✐♥❦ ♠♦❞❡❧ ❆ r❛♥❞♦♠ ✈❛r✐❛❜❧❡ ω ✐s s❛✐❞ t♦ ❤❛✈❡ ❛ Pó❧②❛✲●❛♠♠❛ ❞✐str✐❜✉t✐♦♥ ✇✐t❤ ♣❛r❛♠❡t❡rs b > ✵ ❛♥❞ c ∈ ℜ ✱ ✐❢ � ∞ ✶ g k d ω ∼ P● ( b , c ) = ( k − ✶ / ✷ ) ✷ + c ✷ / ( ✹ π ✷ ) , ✷ π ✷ k = ✶ ✇❤❡r❡ t❤❡ g k ✬s ❛r❡ ✐♥❞❡♣❡♥❞❡♥t❧② ❞✐str✐❜✉t❡❞ ❛❝❝♦r❞✐♥❣ t♦ ❛ ●❛ ( b , ✶ ) ❞✐str✐❜✉t✐♦♥ ✷✼ ✴ ✶✻✵

  18. Pó❧②❛✲●❛♠♠❛ ❉❡♥s✐t② P❧♦t 4 PG(1, 0) Ga(2, 10) 3 f(x) 2 1 0 0.0 0.5 1.0 1.5 x ✷✽ ✴ ✶✻✵

  19. Pr♦♣❡rt✐❡s ♦❢ t❤❡ Pó❧②❛✲●❛♠♠❛ ❉✐str✐❜✉t✐♦♥ P♦❧s♦♥ ❡t ❛❧✳ ❡st❛❜❧✐s❤ ❛♥ ✐♠♣♦rt❛♥t ♣r♦♣❡rt② ♦❢ t❤❡ P● ( b , c ) ❞❡♥s✐t② ✕ ♥❛♠❡❧②✱ t❤❛t ❢♦r a ∈ ℜ ❛♥❞ η ∈ ℜ ✱ � ∞ ( ❡ η ) a ❡ − ωη ✷ / ✷ p ( ω | b , ✵ ) ❞ ω, ( ✶ + ❡ η ) b = ✷ − b ❡ κη ✵ ✇❤❡r❡ κ = a − b / ✷ ❛♥❞ p ( ω | b , ✵ ) ❞❡♥♦t❡s ❛ P● ( b , ✵ ) ❞❡♥s✐t②✳ ❚❤❡ ❧❡❢t✲❤❛♥❞ s✐❞❡ ❤❛s t❤❡ s❛♠❡ ❢✉♥❝t✐♦♥❛❧ ❢♦r♠ ❛s t❤❡ ♣r♦❜❛❜✐❧✐t② ♣❛r❛♠❡t❡r ✐♥ ❛ ❧♦❣✐st✐❝ r❡❣r❡ss✐♦♥ ♠♦❞❡❧ ❚❤❡ ✐♥t❡❣r❛♥❞ ♦♥ t❤❡ r✐❣❤t✲❤❛♥❞ s✐❞❡ ✐s t❤❡ ❦❡r♥❡❧ ♦❢ ❛ ♥♦r♠❛❧ ❞❡♥s✐t② ✇✐t❤ ♣r❡❝✐s✐♦♥ ω ✭✐✳❡✳✱ t❤❡ ❝♦♥❞✐t✐♦♥❛❧ ❞❡♥s✐t② ♦❢ η ✮ t✐♠❡s t❤❡ ♣r✐♦r ❢♦r ω ✷✾ ✴ ✶✻✵

  20. ❈♦♥♥❡❝t✐♦♥ t♦ t❤❡ ▲♦❣✐st✐❝ ▼♦❞❡❧ ■♥ ♣❛rt✐❝✉❧❛r✱ ✉♥❞❡r t❤❡ ❧♦❣✐st✐❝ ♠♦❞❡❧✱ t❤❡ ❧✐❦❡❧✐❤♦♦❞ ❢♦r t❤❡ ❜✐♥❛r② r❡s♣♦♥s❡ ✈❡❝t♦r ❨ = ( Y ✶ , . . . , Y n ) T ✐s � n p ( ② | β ) = p ( y i | β ) i = ✶ � � y i � � ✶ − y i � n ❡①♣ ( η i ) ✶ = ✶ + ❡①♣ ( η i ) ✶ + ❡①♣ ( η i ) i = ✶ � n ( ❡ η i ) y i = ✶ + ❡ η i , i = ✶ ✇❤❡r❡ η i = ① T i β ✳ ❚❤❡ i ✲t❤ ❡❧❡♠❡♥t ♦❢ t❤❡ ❇❡r♥♦✉❧❧✐ ❧✐❦❡❧✐❤♦♦❞ ❤❛s t❤❡ s❛♠❡ ❢♦r♠ ❛s t❤❡ ❧❡❢t✲❤❛♥❞ ❡①♣r❡ss✐♦♥ ✐♥ t❤❡ ❡❛r❧✐❡r ♣r♦♣❡rt②✱ ✇✐t❤ a i = Y i ❛♥❞ b = ✶✳ ✸✵ ✴ ✶✻✵

  21. ❈♦♥♥❡❝t✐♦♥ t♦ t❤❡ ▲♦❣✐st✐❝ ▼♦❞❡❧ ❚❤✉s✱ ✇❡ ❝❛♥ r❡✲✇r✐t❡ t❤❡ ❇❡r♥♦✉❧❧✐ ❧✐❦❡❧✐❤♦♦❞ ✐♥ t❡r♠s ♦❢ t❤❡ Pó❧②❛✲●❛♠♠❛ r❛♥❞♦♠ ✈❛r✐❛❜❧❡s ω = ( ω ✶ , . . . , ω n ) T ✿ � ∞ ❡ − ω i η ✷ p ( y i | β ) ∝ ❡ κ i η i i / ✷ p ( ω i | ✶ , ✵ ) ❞ ω i , ✵ ✇❤❡r❡ κ i = y i − ✶ ✷ ✳ ❙♦✱ ❛t ❡❛❝❤ ✐t❡r❛t✐♦♥✱ ✇❡✬❧❧ ❞r❛✇ ω i ✱ ✉♣❞❛t❡ β ❜❛s❡❞ ♦♥ t❤❡ ♥♦r♠❛❧ ♠♦❞❡❧ ❢♦r η i = ① T i β ✱ ❛♥❞ t❤❡♥ ❛✈❡r❛❣❡ ❛❝r♦ss t❤❡ ✐t❡r❛t✐♦♥s t♦ ♣❡r❢♦r♠ t❤❡ ▼♦♥t❡ ❈❛r❧♦ ✐♥t❡❣r❛t✐♦♥ ✸✶ ✴ ✶✻✵

  22. ❉✐str✐❜✉t✐♦♥ ♦❢ ▲❛t❡♥t ◆♦r♠❛❧s ❩ ❇② ❛♣♣❡❛❧✐♥❣ t♦ t❤❡ ❛❜♦✈❡ ♣r♦♣❡rt✐❡s t❤❡ Pó❧②❛✲●❛♠♠❛ ❞✐str✐❜✉t✐♦♥✱ P♦❧s♦♥ ❡t ❛❧✳ s❤♦✇ t❤❛t t❤❡ ❢✉❧❧ ❝♦♥❞✐t✐♦♥❛❧ ❞✐str✐❜✉t✐♦♥ ♦❢ β ✱ ❣✐✈❡♥ ❨ ❛♥❞ ω ✱ ✐s � � − ✶ ✷ ( ③ − ❳ β ) T ❲ ( ③ − ❳ β ) p ( β | ❨ = ② , ω ) ∝ π ( β ) ❡①♣ , ✇❤❡r❡ • π ( β ) ✐s t❤❡ ♣r✐♦r ❞✐str✐❜✉t✐♦♥ ❢♦r β • ❋♦r i = ✶ , . . . , n ✱ z i = y i − ✶ / ✷ ✇✐t❤ ③ = ( z ✶ , . . . , z n ) T ω i • ❲ = ❞✐❛❣ ( ω i ) ✐s ❛♥ n × n ♣r❡❝✐s✐♦♥ ♠❛tr✐① ■t ✐s ❝❧❡❛r t❤❛t t❤❡ r❛♥❞♦♠ ✈❛r✐❛❜❧❡ ❩ ✐s ♥♦r♠❛❧❧② ❞✐str✐❜✉t❡❞ ✇✐t❤ ♠❡❛♥ η = ❳ β ❛♥❞ ❞✐❛❣♦♥❛❧ ❝♦✈❛r✐❛♥❝❡ ❲ − ✶ ✸✷ ✴ ✶✻✵

  23. ❋✉❧❧ ❈♦♥❞✐t✐♦♥❛❧ ❢♦r β ❚❤✉s✱ ❛ss✉♠✐♥❣ ❛ ◆ p ( β ✵ , ❚ − ✶ ✵ ) ♣r✐♦r ❢♦r β ✱ t❤❡ ❢✉❧❧ ❝♦♥❞✐t✐♦♥❛❧ ❢♦r β ❣✐✈❡♥ ❩ = ③ ❛♥❞ ❲ ✐s ◆ p ( ♠ , ❱ ) ✱ ✇❤❡r❡ � � − ✶ ❚ ✵ + ❳ T ❲ ❳ = ❱ � � ❚ ✵ β ✵ + ❳ T ❲ ③ ♠ = ❱ ❚❤✐s ❧❡❛❞s t♦ t❤❡ ❢♦❧❧♦✇✐♥❣ ●✐❜❜s s❛♠♣❧❡r✿ ✶ ❋♦r i = ✶ , . . . , n ✱ ✉♣❞❛t❡ ω i ❢r♦♠ ❛ P● ( ✶ , η i ) ❞❡♥s✐t②✱ ✇❤❡r❡ η i = ① T i β ✷ ❋♦r i = ✶ , . . . , n ✱ ❞❡✜♥❡ z i = y i − ✶ / ✷ ω i ✸ ❈♦♥❞✐t✐♦♥❛❧ ♦♥ ③ ❛♥❞ ❲ ✱ ✉♣❞❛t❡ β ❢r♦♠ ◆ p ( ♠ , ❱ ) ✱ ✇❤❡r❡ ♠ ❛♥❞ ❱ ❛r❡ ❣✐✈❡♥ ❛❜♦✈❡✳ ✸✸ ✴ ✶✻✵

  24. ❙❛♠♣❧✐♥❣ ❢r♦♠ t❤❡ P● ❉❡♥s✐t② ❆❝❝❡♣t❛♥❝❡ r❡❥❡❝t✐♦♥ s❛♠♣❧✐♥❣ ✐s ✉s❡❞ t♦ ❞r❛✇ ❢r♦♠ t❤❡ P● ❞❡♥s✐t② ❚❤✐s ❝❛♥ ❜❡ ✐♠♣❧❡♠❡♥t❡❞ ✉s✐♥❣ t❤❡ r♣❣ ❢✉♥❝t✐♦♥ ❢r♦♠ t❤❡ ❘ ♣❛❝❦❛❣❡ ❇❛②❡s▲♦❣✐t ■ ❤❛✈❡ ✉♣❧♦❛❞❡❞ ❛ ③✐♣ ✜❧❡ ♦❢ t❤❡ ♣❛❝❦❛❣❡ ♦♥t♦ t❤❡ ❝♦✉rs❡ ✇❡❜s✐t❡ ❆❧t❡r♥❛t✐✈❡❧②✱ ②♦✉ ❝❛♥ ❞♦✇♥❧♦❛❞ ❢r♦♠ ❤tt♣s✿✴✴♠r❛♥✳♠✐❝r♦s♦❢t✳❝♦♠✴s♥❛♣s❤♦t✴✷✵✶✹✲✶✵✲✷✵✴ ✇❡❜✴♣❛❝❦❛❣❡s✴❇❛②❡s▲♦❣✐t✴✐♥❞❡①✳❤t♠❧ ❖r ❣♦ t♦ ❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❥✇✐♥❞❧❡✴❇❛②❡s▲♦❣✐t ❢♦r ❛ ♠♦r❡ r❡❝❡♥t ✈❡rs✐♦♥ ❙❡❡ P● ▲♦❣✐t✳r ❢♦r ❞❡t❛✐❧s ✸✹ ✴ ✶✻✵

  25. ❘ ❈♦❞❡ ❢♦r Pó❧②❛✲●❛♠♠❛ ▲♦❣✐st✐❝ ▼♦❞❡❧ Logistic Regression Using PG Latent Variables library (BayesLogit) # For rpg function library (mvtnorm) # Priors beta0<- rep (0,p) # Prior mean of beta T0<- diag (.01,p) # Prior precision of beta # Inits beta<- rep (0,p) ################# # Store Samples # ################# nsim<-1000 # Number of MCMC Iterations thin<-1 # Thinning interval burn<-nsim/2 # Burnin lastit<-(nsim-burn)/thin # Last stored value Beta<- matrix (0,lastit,p) ######### # Gibbs # ######### tmp<- proc.time () # Store current time for (i in 1:nsim){ eta<-X%*%beta w<- rpg (n,1,eta) z<-(y-1/2)/w # Or define z=y-1/2 and omit w in posterior mean m below v<- solve ( crossprod (X* sqrt (w))+T0) # Or solve(X%*%W%*%X), where W=diag(w) -- but this is slower m<-v%*%(T0%*%beta0+ t (w*X)%*%z) # Can omit w here if you define z=y-1/2 beta<- c ( rmvnorm (1,m,v)) ################# # Store Results # ################# if (i> burn & i%%thin==0) { j<-(i-burn)/thin Beta[j,]<-beta } if (i%%100==0) print (i) } proc.time ()-tmp # MCMC run time -- 1.2 seconds to run 1000 iterations with n=1000 ✸✺ ✴ ✶✻✵

  26. ❊①❛♠♣❧❡ ❚❤❡ ♣r♦❣r❛♠ P● ▲♦❣✐t✳r ✜ts t❤❡ s❛♠❡ ❧♦❣✐st✐❝ ♠♦❞❡❧ ❛s ❜❡❢♦r❡✿ Y i ∼ ❇❡r♥ ( π i ) ❧♦❣✐t ( π i ) = β ✵ + β ✶ x i , i = ✶ , . . . , ✶✵✵✵ . ❚❤❡ r❡s✉❧ts✱ ❜❛s❡❞ ♦♥ ✶✵✵✵ ✐t❡r❛t✐♦♥s ✇✐t❤ ❛ ❜✉r♥✲✐♥ ♦❢ ✺✵✵✱ ❛r❡ ✐❞❡♥t✐❝❛❧ t♦ t❤❡ ♣r❡✈✐♦✉s ♦♥❡s✿ ❚❛❜❧❡ ✹✿ ❘❡s✉❧ts ❢♦r ▲♦❣✐st✐❝ ▼♦❞❡❧✳ ❚r✉❡ P♦st❡r✐♦r ▼❡❛♥ ✭❙❉✮ † P❛r❛♠❡t❡r ❱❛❧✉❡ ▼▲❊ ✭❙❊✮ β ✵ − ✶ − ✶ . ✵✽ ( ✵ . ✵✽ ) − ✶ . ✵✽ ( ✵ . ✵✽ ) β ✶ ✶ ✵ . ✾✷ ( ✵ . ✵✾ ) ✵ . ✾✸ ( ✵ . ✵✾ ) † ❇❛s❡❞ ♦♥ P● s❛♠♣❧❡r✳ ✸✻ ✴ ✶✻✵

  27. ❇❛②❡s✐❛♥ ❖r❞✐♥❛❧ ❘❡❣r❡ss✐♦♥ ❆❧❜❡rt ❛♥❞ ❈❤✐❜ ✭✶✾✾✸✮ ❡①t❡♥❞ t❤❡✐r ❞❛t❛ ❛✉❣♠❡♥t❛t✐♦♥ s❛♠♣❧❡r t♦ ❛❝❝♦♠♠♦❞❛t❡ ♦r❞❡r❡❞ ❝❛t❡❣♦r✐❝❛❧ ♦✉t❝♦♠❡s ❋♦r ❡①❛♠♣❧❡✱ t❤❡ ❝✉♠✉❧❛t✐✈❡ ❧♦❣✐t ♠♦❞❡❧ ✇✐t❤ K ❝❛t❡❣♦r✐❡s ✐s ❧♦❣✐t ( φ ik ) = ❧♦❣✐t [ Pr ( Y i ≤ k )] = γ k + ① T i β , k = ✶ , . . . , K − ✶ , • φ ik ✐s t❤❡ k ✲t❤ ❝✉♠✉❧❛t✐✈❡ ♣r♦❜❛❜✐❧✐t② • γ k ✐s t❤❡ ✐♥t❡r❝❡♣t ❛ss♦❝✐❛t❡❞ ✇✐t❤ k ✲t❤ ❝✉♠✉❧❛t✐✈❡ ❧♦❣✐t • ① i ✐s ❛ ✈❡❝t♦r ♦❢ ❝♦✈❛r✐❛t❡s ❡①❝❧✉❞✐♥❣ ❛♥ ✐♥t❡r❝❡♣t • β ✐s ❛ ✈❡❝t♦r ♦❢ r❡❣r❡ss✐♦♥ ❝♦❡✣❝✐❡♥ts ❝♦♠♠♦♥ t♦ ❛❧❧ ❝✉♠✉❧❛t✐✈❡ ❧♦❣✐ts ✭♣r♦♣♦rt✐♦♥❛❧ ♦❞❞s✮ β j ❞❡♥♦t❡s t❤❡ ✐♥❝r❡❛s❡ ✐♥ t❤❡ ❧♦❣ ♦❞❞s ♦❢ ❧♦✇❡r ❝❛t❡❣♦r② ✈❛❧✉❡s ❢♦r ❛ ✉♥✐t ✐♥❝r❡❛s❡ ✐♥ x j ✸✼ ✴ ✶✻✵

  28. ▲❛t❡♥t ❱❛r✐❛❜❧❡ ■♥t❡r♣r❡t❛t✐♦♥ ♦❢ ❖r❞✐♥❛❧ ▼♦❞❡❧ 0.4 0.3 Pr( γ 1 < Z i < γ 2 ) = Pr(Y i = 2) f(z i ) 0.2 0.1 Pr(Z i < γ 1 ) = Pr(Y i = 1) Pr(Z i > γ 2 ) = Pr(Y i = 3) 0.0 γ 1 γ 2 T β x i z i ✸✽ ✴ ✶✻✵

  29. ●✐❜❜s ❙❛♠♣❧❡r ❢♦r Pr♦♣♦rt✐♦♥❛❧ ❖❞❞s ▼♦❞❡❧ ❚❤❡ ●✐❜❜s s❛♠♣❧❡r ✐s ❛ s❧✐❣❤t ♠♦❞✐✜❝❛t✐♦♥ ♦❢ t❤❡ ♣r❡✈✐♦✉s s❛♠♣❧❡r ❢♦r ♣r♦❜✐t✴❧♦❣✐t r❡❣r❡ss✐♦♥ ❍❡r❡✱ ✐♥ ❛❞❞✐t✐♦♥ t♦ ✉♣❞❛t✐♥❣ Z i ❛♥❞ β ✱ ✇❡ ♠✉st ❛❧s♦ ✉♣❞❛t❡ γ = ( γ ✶ , . . . , γ K − ✶ ) T ◆♦t❡ t❤❛t ✇❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ♦r❞❡r ❝♦♥str❛✐♥t✿ ❛❧❧ Z ( y = k ) < γ k < ❛❧❧ Z ( y =( k + ✶ )) ❢♦r k = ✶ , . . . , K − ✶ ❚❤✐s ✐♠♣❧✐❡s✱ ❢♦r ✐♥st❛♥❝❡✱ t❤❛t γ ✶ ❤❛s t♦ ❧✐❡ ❜❡t✇❡❡♥ t❤❡ ❧❛r❣❡st Z s✳t✳ Y = ✶ ❛♥❞ t❤❡ s♠❛❧❧❡st Z s✳t✳ t❤❛t Y = ✷ ❲❡ ❤❛✈❡ t♦ ♦❜❡② t❤✐s ❝♦♥str❛✐♥t ✇❤❡♥ ✉♣❞❛t✐♥❣ γ ✸✾ ✴ ✶✻✵

  30. ●✐❜❜s ❙❛♠♣❧❡r ❢♦r Pr♦♣♦rt✐♦♥❛❧ ❖❞❞s ▼♦❞❡❧ ❚❤❡ s❛♠♣❧❡r ♣r♦❝❡❡❞s ❜② ✐♥✐t✐❛❧✐③✐♥❣ γ ❛♥❞ β ❛♥❞ t❤❡♥ ✐t❡r❛t✐♥❣ t❤r♦✉❣❤ t❤❡ ❢♦❧❧♦✇✐♥❣ st❡♣s✿ i β , λ − ✶ ✶ ❋♦r ✐❂✶✱✳ ✳ ✳ ✱♥✱ ✐❢ y i = k ✱ ❞r❛✇ z i ❢r♦♠ ◆ ( ① T i ) tr✉♥❝❛t❡❞ ❜❡t✇❡❡♥ γ k − ✶ ❛♥❞ γ k ✱ ✇✐t❤ γ ✵ = −∞ ❛♥❞ γ K = ∞ ◆♦t❡✿ ❋♦r t❤❡ ❝✉♠✉❧❛t✐✈❡ ♣r♦❜✐t ♠♦❞❡❧✱ λ i = ✶ ∀ i ✷ ❯♣❞❛t❡ β ❢r♦♠ ◆ p ( ♠ , ❱ ) ✱ � � ❚ ✵ + ❳ T ❲ ❳ ❱ = � � ❚ ✵ β ✵ + ❳ T ❲ ③ ♠ = ❱ ✇❤❡r❡ ❲ = ■ n ❢♦r ♣r♦❜✐t ♠♦❞❡❧ ❛♥❞ ❲ = ❞✐❛❣ ( λ i ) ❢♦r t ✲❧✐♥❦ ♠♦❞❡❧ ✸ ❢♦r k = ✶ , . . . , K − ✶✱ ✉♣❞❛t❡ γ k ❢r♦♠ ❯♥✐❢ ( ♠❛① z i : y i = k , ♠✐♥ z i : y i = k + ✶ ) ✹ ❋♦r t❤❡ ❝✉♠✉❧❛t✐✈❡ ❧♦❣✐t ♠♦❞❡❧✱ ✉♣❞❛t❡ λ i ❢r♦♠ ✐ts ●❛♠♠❛ ❢✉❧❧ ❝♦♥❞✐t✐♦♥❛❧ ❛♥❛❧♦❣♦✉s t♦ t❤❡ ✭✷✲❝❛t❡❣♦r②✮ ❧♦❣✐st✐❝ ♠♦❞❡❧ ❞✐s❝✉ss❡❞ ❡❛r❧✐❡r ❙❡❡ ❈✉♠❴▲♦❣✐t✳r ❛♥❞ ❈✉♠❴Pr♦❜✐t✳r ❢♦r ❞❡t❛✐❧s ✹✵ ✴ ✶✻✵

  31. ❘ ❈♦❞❡ ❢♦r ❈✉♠✉❧❛t✐✈❡ ▲♦❣✐t ▼♦❞❡❧ Gibbs Sampler for 3-Category Cumulative Logit Model First assign a N ( β 0 , T − 1 0 ) prior to β # Initial Values gam1<-0 gam2<-3 beta<-0 # Only 1 covariate in this example lambda<- rep (1,n) # Weights nu<-8 # 8 df ~ logistic -- assume fixed z<- rep (0,n) # latent z vector ################### # GIBBS SAMPLER # ################### tmp<- proc.time () for (i in 1:nsim) { # Draw latent z using inverse CDF method muz<-x*beta z[y==1]<- qnorm ( runif (ns[1],0, pnorm (gam1,muz[y==1], sqrt (1/lambda[y==1]))),muz[y==1], sqrt (1/lambda[y==1 z[y==2]<- qnorm ( runif (ns[2], pnorm (gam1,muz[y==2], sqrt (1/lambda[y==2])), pnorm (gam2,muz[y==2], sqrt (1/lambda[y== z[y==3]<- qnorm ( runif (ns[3], pnorm (gam2,muz[y==3], sqrt (1/lambda[y==3])),1),muz[y==3], sqrt (1/lambda[y==3 # Update gammas gam1<- runif (1, max (z[y==1]), min (z[y==2])) gam2<- runif (1, max (z[y==2]), min (z[y==3])) # Update beta vbeta<- solve ( crossprod (x* sqrt (lambda))) mbeta<-vbeta%*%( crossprod (x*lambda,z)) beta<- rnorm (1,mbeta, sqrt (vbeta)) # Update lambda lambda<- rgamma (n,(nu+1)/2,(nu+(z-x*beta)^2)/2) ################# # Store Results # ################# if (i> burn & i%%thin==0) { j<-(i-burn)/thin Beta[j]<-beta Gam1[j]<-gam1 Gam2[j]<-gam2 } if(i%%100==0) print (i) } proc.time ()-tmp # MCMC run time -- took 4.5 seconds to run 10K iterations with n=500 ✹✶ ✴ ✶✻✵

  32. ❊①❛♠♣❧❡ ❚❤❡ ♣r♦❣r❛♠ ❈✉♠❴▲♦❣✐t✳r s✐♠✉❧❛t❡s ✺✵✵ ♦❜s❡r✈❛t✐♦♥s ❛❝❝♦r❞✐♥❣ t♦ t❤❡ t❤❡ ❢♦❧❧♦✇✐♥❣ t❤r❡❡✲❝❛t❡❣♦r② ❝✉♠✉❧❛t✐✈❡ ❧♦❣✐t ♠♦❞❡❧✿ ❧♦❣✐t ( φ ik ) = ❧♦❣✐t [ Pr ( Y i ≤ k )] = γ k + β x i , k = ✶ , ✷ . ❚❤❡ r❡s✉❧ts✱ ❜❛s❡❞ ♦♥ ✶✵✱✵✵✵ ✐t❡r❛t✐♦♥s ✇✐t❤ ❛ ❜✉r♥✲✐♥ ♦❢ ✺✵✵✵ ❛♥❞ t❤✐♥♥✐♥❣ ♦❢ ✶✵✱ ❛r❡✿ ❚❛❜❧❡ ✺✿ ❘❡s✉❧ts ❢♦r ❈✉♠✉❧❛t✐✈❡ ▲♦❣✐t ▼♦❞❡❧✳ ❚r✉❡ P♦st❡r✐♦r ▼❡❛♥ ✭❙❉✮ † P❛r❛♠❡t❡r ❱❛❧✉❡ ▼▲❊ ✭❙❊✮ γ ✶ − ✶ − ✶ . ✵✹ ( ✵ . ✶✼ ) − ✶ . ✵✵ ( ✵ . ✶✾ ) γ ✷ ✶ ✵ . ✽✼ ( ✵ . ✶✻ ) ✵ . ✾✺ ( ✵ . ✶✼ ) β ✵ . ✼✺ ✵ . ✼✸ ( ✵ . ✵✽ ) ✵ . ✼✼ ( ✵ . ✵✽ ) † ❇❛s❡❞ ♦♥ ❆❧❜❡rt ❛♥❞ ❈❤✐❜ s❛♠♣❧❡r✳ ✹✷ ✴ ✶✻✵

  33. ❚r❛❝❡ P❧♦ts ❋✐❣✉r❡ ✶✿ ❚r❛❝❡ ♣❧♦ts s❤♦✇ ❤✐❣❤ ❛✉t♦❝♦rr❡❧❛t✐♦♥✱ ❡s♣✳ ❛♠♦♥❣ γ s −0.6 −1.0 γ 1 −1.4 0 100 200 300 400 500 Iteration 1.2 1.0 γ 2 0.8 0.6 0 100 200 300 400 500 Iteration 0.8 β 0.6 0 100 200 300 400 500 Iteration ✹✸ ✴ ✶✻✵

  34. ▼✉❧t✐♥♦♠✐❛❧ ▲♦❣✐t ❘❡❣r❡ss✐♦♥ ▲❡t Y i ❞❡♥♦t❡ ❛♥ ✉♥♦r❞❡r❡❞ ♦r ♥♦♠✐♥❛❧ ❝❛t❡❣♦r✐❝❛❧ ❘❱ t❛❦✐♥❣ ✈❛❧✉❡s k = ✶ , . . . , K ✇✐t❤ k ✲t❤ ♣r♦❜❛❜✐❧✐t② π ik = Pr ( Y i = k | ① i ) ✱ ✇❤❡r❡ � K k = ✶ π ik = ✶ ❚❤❡ ♠✉❧t✐♥♦♠✐❛❧ ❧♦❣✐t ♠♦❞❡❧ ✐s ❣✐✈❡♥ ❜② ❡ ① T i β k Pr ( Y i = k | ① i ) = π ik = i β j , k = ✶ , . . . , K , � K j = ✶ ❡ ① T ✇✐t❤ β K = ✵ ❢♦r t❤❡ r❡❢❡r❡♥❝❡ ❝❛t❡❣♦r② K ✳ ❆❧t❡r♥❛t✐✈❡❧②✱ ✇❡ ❝❛♥ ✇r✐t❡ ❡ ① T i β k Pr ( Y i = k | ① i ) = π ik = i β j , k = ✶ , . . . , K − ✶ ✶ + � K − ✶ j = ✶ ❡ ① T ✶ Pr ( Y i = K | ① i ) = π iK = ✶ + � K − ✶ r❡❢❡r❡♥❝❡ ❝❛t❡❣♦r② , j = ✶ ❡ ① T i β j ✇❤❡r❡ β k ❞❡♥♦t❡s t❤❡ r❡❣r❡ss✐♦♥ ❝♦❡✣❝✐❡♥ts ❛ss♦❝✐❛t❡❞ ✇✐t❤ k ✲t❤ ❝❛t❡❣♦r② ■♥ ♦t❤❡r ✇♦r❞s✱ ❝♦♥❞✐t✐♦♥❛❧ ♦♥ ① i ✱ Y i ❤❛s ❛ ▼✉❧t✐ ( ✶ , π i ) ✱ ✇❤❡r❡ π i = ( π i ✶ , . . . , π iK ) ❛♥❞ � K k = ✶ π ik = ✶✳ ✹✹ ✴ ✶✻✵

  35. ▼✉❧t✐♥♦♠✐❛❧ ▲♦❣✐t ❘❡❣r❡ss✐♦♥ ❲❡ ❝❛♥ ❛❧s♦ ✇r✐t❡ t❤❡ ♠✉❧t✐♥♦♠✐❛❧ ❧♦❣✐t ♠♦❞❡❧ ❛s Pr ( Y i = K | ① i ) = π ik Pr ( Y i = k | ① i ) = ❡①♣ ( ① T i β k ) , k = ✶ , . . . , K − ✶ , π iK ✇❤✐❝❤ ✐s t❤❡ ♦❞❞s ♦❢ ❜❡✐♥❣ ✐♥ ❝❛t❡❣♦r② k ✈s✳ t❤❡ r❡❢❡r❡♥❝❡ ❝❛t❡❣♦r② K ✳ ❖r✱ ❡q✉✐✈❛❧❡♥t❧②✱ � π ik � = ① T ❧♥ i β k . π iK ■♥ t❤❡ ♣r♦♣♦rt✐♦♥❛❧ ♦❞❞s ♠♦❞❡❧✱ ♦♥❧② t❤❡ ✐♥t❡r❝❡♣ts α k ✈❛r✐❡❞ ❛❝r♦ss ❝❛t❡❣♦r✐❡s✱ ✇❤✐❧❡ β r❡♠❛✐♥❡❞ ❝♦♥st❛♥t ❍❡r❡✱ ❛❧❧ r❡❣r❡ss✐♦♥ ♣❛r❛♠❡t❡rs ✈❛r② ✇✐t❤ r❡s♣❡❝t t♦ k ✭❤❡♥❝❡ β k ✮ ❚❤❡r❡ ❛r❡ ❛❧s♦ ♣❛rt✐❛❧ ♣r♦♣♦rt✐♦♥❛❧ ♦❞❞s ♠♦❞❡❧s t❤❛t ❛❧❧♦✇ ♦♥❧② s♦♠❡ β ✬s t♦ ✈❛r② ❛❝r♦ss ❝❛t❡❣♦r✐❡s ✹✺ ✴ ✶✻✵

  36. ▲❛t❡♥t ❱❛r✐❛❜❧❡ ■♥t❡r♣r❡t❛t✐♦♥s ❇♦t❤ t❤❡ ♣r♦♣♦rt✐♦♥❛❧ ♦❞❞s ❛♥❞ ♠✉❧t✐♥♦♠✐❛❧ ❧♦❣✐t ♠♦❞❡❧s ❤❛✈❡ ❧❛t❡♥t ✈❛r✐❛❜❧❡ ✐♥t❡r♣r❡t❛t✐♦♥s ❋♦r t❤❡ ▼◆▲ ♠♦❞❡❧✱ ✇❡ ❤❛✈❡ K ✉♥❞❡r❧②✐♥❣ ✏✉t✐❧✐t✐❡s✑✿ = X i β ✶ + e i ✶ U i ✶ ✳ ✳ ✳ ✳ ✳ ✳ = X i β ( K − ✶ ) + e i ( K − ✶ ) U i ( K − ✶ ) U iK = e iK , ✇❤❡r❡ t❤❡ e ik ✬s ❢♦❧❧♦✇ ✐✳✐✳❞✳ st❛♥❞❛r❞ ●✉♠❜❡❧ ♦r ❚②♣❡✲■ ❡①tr❡♠❡ ✈❛❧✉❡ ❞✐str✐❜✉t✐♦♥s ✇✐t❤ ❈❉❋s ♦❢ t❤❡ ❢♦r♠ ❋ X ( x ) = ❡ − ❡ − x ❙❡t Y i = k ✐✳❢✳❢✳ U ik = ♠❛① ( U i ✶ , . . . , U iK ) ❍❲✿ ❙❤♦✇ t❤❛t t❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ t✇♦ ✐♥❞❡♣❡♥❞❡♥t st❛♥❞❛r❞ ●✉♠❜❡❧ ❘✳❱✳s ❢♦❧❧♦✇s ❛ ❧♦❣✐st✐❝ ❞✐str✐❜✉t✐♦♥ ✹✻ ✴ ✶✻✵

  37. ❉✐s❝r❡t❡ ❈❤♦✐❝❡ ▼♦❞❡❧s ❚❤✐s ❢♦r♠s t❤❡ ❜❛s✐s ♦❢ s♦✲❝❛❧❧❡❞ r❛♥❞♦♠ ✉t✐❧✐t② ♦r ❞✐s❝r❡t❡ ❝❤♦✐❝❡ ♠♦❞❡❧s ❙❡❡ ❚r❛✐♥ ❉✐s❝r❡t❡ ❈❤♦✐❝❡ ▼❡t❤♦❞s ✇✐t❤ ❙✐♠✉❧❛t✐♦♥ ❢♦r ♠♦r❡ ❞❡t❛✐❧s ♦♥ ❞✐s❝r❡t❡ ❝❤♦✐❝❡ ♠♦❞❡❧s ❚❤❡ ❛✉t❤♦r ❞✐s❝✉ss❡s ♣r♦s ❛♥❞ ❝♦♥s ♦❢ t❤❡ ♠✉❧t✐♥♦♠✐❛❧ ❧♦❣✐t ♠♦❞❡❧✱ ✐♥❝❧✉❞✐♥❣ t❤❡ ✐♥❞❡♣❡♥❞❡♥❝❡ ♦❢ ✐rr❡❧❡✈❛♥t ❛❧t❡r♥❛t✐✈❡s ✭■■❆✮ ♣r♦♣❡rt② ❛s ❡①❡♠♣❧✐✜❡❞ ✐♥ t❤❡ ❝❧❛ss✐❝ ❘❡❞ ❇✉s✴❇❧✉❡ ❇✉s ♣r♦❜❧❡♠ ❚♦ ❝✐r❝✉♠✈❡♥t t❤✐s ♣r♦❜❧❡♠✱ ♦♥❡ ❝❛♥ ✉s❡ t❤❡ ♥❡st❡❞ ❧♦❣✐t ♦r ♠✉❧t✐♥♦♠✐❛❧ ♣r♦❜✐t ♠♦❞❡❧ ❋♦r ❢✉rt❤❡r ❞❡t❛✐❧s✱ s❡❡ ❆❣r❡st✐ ❈❛t❡❣♦r✐❝❛❧ ❉❛t❛ ❆♥❛②s✐s ❙❡❝t✐♦♥s ✽✳✺ ❛♥❞ ✽✳✻ ❛♥❞ r❡❢❡r❡♥❝❡s t❤❡r❡✐♥ ✹✼ ✴ ✶✻✵

  38. ❇❛②❡s✐❛♥ ■♥❢❡r❡♥❝❡ ❢♦r ▼✉❧t✐♥♦♠✐❛❧ ▲♦❣✐t ▼♦❞❡❧ ❚❤❡ Pó❧②❛✲●❛♠♠❛ ❞❛t❛✲❛✉❣♠❡♥t❛t✐♦♥ ❛♣♣r♦❛❝❤ ❝❛♥ ❜❡ ❡①t❡♥❞❡❞ t♦ ❤❛♥❞❧❡ ♠✉❧t✐♥♦♠✐❛❧ ❧♦❣✐t r❡❣r❡ss✐♦♥ ❘❡❝❛❧❧ t❤❛t t❤❡ ♠✉❧t✐♥♦♠✐❛❧ ❧♦❣✐t ♠♦❞❡❧ ❝❛♥ ❜❡ ✇r✐tt❡♥ ❛s ❡ ① T i β k Pr ( Y i = k | ① i ) = π ik = i β j , k = ✶ , . . . , K , � K j = ✶ ❡ ① T ✇✐t❤ β K = ✵ ❢♦r t❤❡ r❡❢❡r❡♥❝❡ ❝❛t❡❣♦r② K ✳ ▲❡t✬s ❝♦♥s✐❞❡r t❤❡ ✉♣❞❛t❡ ❢♦r β k ( k = ✶ , . . . , K − ✶ ) ❝♦♥❞✐t✐♦♥❛❧ ♦♥ ❜♦t❤ ② ❛♥❞ β j ∀ j � = k ✳ ❚❤❡ ✐❞❡❛ ✐s t♦ ❝②❝❧❡ t❤r♦✉❣❤ t❤❡ ✉♣❞❛t❡s ♦❢ β k ♦♥❡ ❛t ❛ t✐♠❡ ❝♦♥❞✐t✐♦♥❛❧ ♦♥ t❤❡ ♦t❤❡r β ✬s ✹✽ ✴ ✶✻✵

  39. ❇❛②❡s✐❛♥ ■♥❢❡r❡♥❝❡ ❢♦r ▼✉❧t✐♥♦♠✐❛❧ ▲♦❣✐t ▼♦❞❡❧ ∗ ❋♦❧❧♦✇✐♥❣ ❍♦❧♠❡s ❛♥❞ ❍❡❧❞ ✭✷✵✵✻✮✱ ✇❡ ❝❛♥ ✇r✐t❡ t❤❡ ❢✉❧❧ ❝♦♥❞✐t✐♦♥❛❧ ❢♦r β k ✱ ❣✐✈❡♥ ② ❛♥❞ β j � = k ✱ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ ❛ ❇❡r♥♦✉❧❧✐ ❧✐❦❡❧✐❤♦♦❞ � n π U ik ik ( ✶ − π ik ) ✶ − U ik f ( β k | ② , β j � = k ) ∝ f ( β k ) i = ✶ ✇❤❡r❡ • f ( β k ) ❞❡♥♦t❡s t❤❡ ♣r✐♦r ❢♦r β k • U ik = ✶ ( Y i = k ) ✐s ❛♥ ✐♥❞✐❝❛t♦r t❤❛t Y i = k ❡ ① T i β k • π ik = Pr ( Y i = k ) = Pr ( U ik = ✶ ) = j = ✶ ❡ ① T i β j � K ✹✾ ✴ ✶✻✵

  40. ❇❛②❡s✐❛♥ ■♥❢❡r❡♥❝❡ ❢♦r ▼✉❧t✐♥♦♠✐❛❧ ▲♦❣✐t ▼♦❞❡❧ ∗ ❋✉rt❤❡r✱ ✇❡ ❝❛♥ r❡✇r✐t❡ π ik ❛s ❡ ① T i β k − c ik π ik = Pr ( U ik = ✶ ) = ✶ + ❡ ① T i β k − c ik ❡ η ik = ✶ + ❡ η ik , ✇❤❡r❡ c ik = ❧♦❣ � j � = k ❡ ① T i β j ❛♥❞ η ik = ① T i β k − c ik ✳ ◆♦t❡ t❤❛t � j � = k ❡ ① T i β j ✐♥❝❧✉❞❡s t❤❡ r❡❢❡r❡♥❝❡ ❝❛t❡❣♦r② K ✳ ❇❡❝❛✉s❡ β K = ✵ ✱ ✐t ❢♦❧❧♦✇s t❤❛t ❡ ① T i β K = ✶ ❛♥❞ ❤❡♥❝❡   � � ❡ ① T i β j = ❧♦❣  ✶ + ❡ ① T  i β j c ik = ❧♦❣ j � = k j / ∈{ k , K } ✺✵ ✴ ✶✻✵

  41. ❇❛②❡s✐❛♥ ■♥❢❡r❡♥❝❡ ❢♦r ▼✉❧t✐♥♦♠✐❛❧ ▲♦❣✐t ▼♦❞❡❧ ❚❤✉s✱ t❤❡ ❢✉❧❧ ❝♦♥❞✐t✐♦♥❛❧ ❢♦r β k ❣✐✈❡♥ ② ❛♥❞ β j � = k ✱ ✐s � � U ik � � ✶ − U ik � n ❡ η ik ✶ f ( β k | ② , β j � = k ) ∝ f ( β k ) ✶ + ❡ η ik ✶ + ❡ η ik i = ✶ � n ( ❡ η ik ) U ik = f ( β k ) ✶ + ❡ η ik , i = ✶ ✇❤✐❝❤ ✐s ❡ss❡♥t✐❛❧❧② ❛ ❧♦❣✐st✐❝ r❡❣r❡ss✐♦♥ ❧✐❦❡❧✐❤♦♦❞✳ ❚❤✉s✱ ✇❡ ❝❛♥ ❛♣♣❧② t❤❡ Pó❧②❛✲●❛♠♠❛ ❞❛t❛✲❛✉❣♠❡♥t❛t✐♦♥ s❝❤❡♠❡ t♦ ✉♣❞❛t❡ t❤❡ β k ✬s ( k = ✶ , . . . , K − ✶ ) ♦♥❡ ❛t ❛ t✐♠❡ ❜❛s❡❞ ♦♥ t❤❡ ❜✐♥❛r② ✐♥❞✐❝❛t♦rs U ik = ✶ ( Y i = k ) ✺✶ ✴ ✶✻✵

  42. ●✐❜❜s ❙❛♠♣❧❡r ❢♦r ▼✉❧t✐♥♦♠✐❛❧ ▲♦❣✐t ▼♦❞❡❧ ❆ss✉♠✐♥❣ ❛ ◆ ( β ✵ , ❚ − ✶ ✵ ) ❢♦r β ✶ , . . . , β K − ✶ ✱ t❤❡ ●✐❜❜s s❛♠♣❧❡r ♣r♦❝❡❡❞s ❛s ❢♦❧❧♦✇s✿ ✶ ❖✉ts✐❞❡ ♦❢ t❤❡ ●✐❜❜s ❧♦♦♣✱ ❞❡✜♥❡ u ik = ✶ ( y i = k ) ❢♦r i = ✶ , . . . , n ❛♥❞ k = ✶ , . . . , K − ✶ ✷ ❋♦r i = ✶ , . . . , n ❛♥❞ k = ✶ , . . . , K − ✶✱ ✉♣❞❛t❡ ω ik ❢r♦♠ ❛ P● ( ✶ , η ik ) ❞❡♥s✐t②✱ ✇❤❡r❡ η ik = ① T i β k − c ik ✱ ❛♥❞ c ik ✇❛s ❞❡✜♥❡❞ ❡❛r❧✐❡r ✸ ❋♦r i = ✶ , . . . , n ❛♥❞ k = ✶ , . . . , K − ✶✱ ❞❡✜♥❡ z ik = u ik − ✶ / ✷ + c ik ω ik ❛♥❞ ❧❡t ③ k = ( z ✶ k , . . . , z nk ) T ✹ ❋♦r k = ✶ , . . . , K − ✶✱ ✉♣❞❛t❡ β k ❢r♦♠ ◆ p ( ♠ k , ❱ k ) ✱ ✇❤❡r❡ � � − ✶ ❚ ✵ + ❳ T ❲ k ❳ ❱ k = � � ❚ ✵ β ✵ + ❳ T ❲ k ③ k ♠ k = ❱ k , ❛♥❞ ❲ k = ❞✐❛❣ ( ω ik ) ✳ ❙❡❡ P♦❧s♦♥ ❡t ❛❧✳ ✭✷✵✶✷✮ ♣❛❣❡ ✹✶ ❢♦r ❞❡t❛✐❧s✱ ❜✉t ♥♦t❡ t②♣♦ ✐♥ ❡①♣r❡ss✐♦♥ ❢♦r ♠ j ❛t ❜♦tt♦♠ ✺✷ ✴ ✶✻✵

  43. ❊①❛♠♣❧❡ ❚❤❡ ♣r♦❣r❛♠ ♠✉❧t✐♥♦♠✐❛❧✳r s✐♠✉❧❛t❡s ✶✵✵✵ ♦❜s❡r✈❛t✐♦♥s ❢r♦♠ t❤❡ ❢♦❧❧♦✇✐♥❣ t❤r❡❡✲❝❛t❡❣♦r② ♠✉❧t✐♥♦♠✐❛❧ ♠♦❞❡❧ ❡ ① T i β k Pr ( Y i = k | ① i ) = π ik = i β j , k = ✶ , . . . , ✸ , � K j = ✶ ❡ ① T ✇✐t❤ β ✶ = ✵ ❢♦r r❡❢❡r❡♥❝❡ ❝❛t❡❣♦r② ✶✳ ❚❤❡ ♣r♦❣r❛♠ ❣❡♥❡r❛t❡s ❞❛t❛ ✉s✐♥❣ t❤❡ ●✉♠❜❡❧ ❧❛t❡♥t ✉t✐❧✐t✐❡s ❙❡❡ ♠✉❧t✐♥♦♠✐❛❧✳r ❢♦r ❞❡t❛✐❧s ✺✸ ✴ ✶✻✵

  44. ❘ ❈♦❞❡ ❢♦r ●❡♥❡r❛t✐♥❣ ▼✉❧t✐♥♦♠✐❛❧ ▲♦❣✐t ❉❛t❛ Data Generation for Multinomial Logit Model # Multinomial.r # Generate and fit a 3-Category Multinomial Logit # Generate data using latent Gumbel random utilities # See Polson et al. 2012 Appendix S6.3 BUT NOTE TYPO AT BOTTOM OF PAGE 41! # 3-Category outcome: Independent, Republican and Democrat, with Ind as ref group ####################################### library (QRM) # For rGumbel function library (nnet) # To fit multinom function library (BayesLogit) # For rpg function ############################## # Generate Data under # # Random Utility Model (RUM) # ############################## set.seed (060817) n<-1000 K<-3 # Number of response categories female<- rbinom (n,1,.5) X<- cbind (1,female) p<- ncol (X) beta2<- c (1,-.5) # Males much more likely to be Rep than Ind and females "somewhat" more likely beta3<- c (.5,.5) # Males somewhat more likely to be Dem than Indep and females much more likely eta2<-X%*%beta2 eta3<-X%*%beta3 u1<- rGumbel (n, mu = 0, sigma = 1) u2<- rGumbel (n, mu = eta2, sigma = 1) u3<- rGumbel (n, mu = eta3, sigma = 1) U<- cbind (u1,u2,u3) y<- c ( apply (U,1,which.max)) # Y=1 if Ind (Reference), 2 if Rep, 3 if Dem fit<- multinom (y~female) ✺✹ ✴ ✶✻✵

  45. ❘ ❈♦❞❡ ❢♦r ✸✲❈❛t❡❣♦r② ▼✉❧t✐♥♦♠✐❛❧ ▲♦❣✐t ▼♦❞❡❧ Gibbs Sampler for Multinomial Logit Model # Define category-specific binary responses (Note: cat 1 is reference) u2<-1*(y==2) u3<-1*(y==3) # Priors beta0<- rep (0,p) # Prior mean of beta T0<- diag (.01,p) # Prior precision of beta # Inits beta2<-beta3<- rep (0,p) ################# # Gibbs sampler # ################# tmp<- proc.time () # Store current time for (i in 1:nsim){ # Update category 2 c2<- log (1+ exp (X%*%beta3)) # Note that for Cat 1, beta1=0 so that exp(X%*%beta1)= 1 eta2<-X%*%beta2-c2 w2<- rpg (n,1,eta2) z2<-(u2-1/2)/w2+c2 # Note plus sign before c2 -- Polson has typo # Could also define z2<-u2-1/2+w2*c2 and omit w2 in post. mean m v<- solve (T0+ crossprod (X* sqrt (w2))) m<-v%*%(T0%*%beta0+ t (w2*X)%*%z2) beta2<- c ( rmvnorm (1,m,v)) # Update category 3 c3<- log (1+ exp (X%*%beta2)) eta3<-X%*%beta3-c3 w3<- rpg (n,1,eta3) z3<-(u3-1/2)/w3+c3 v<- solve (T0+ crossprod (X* sqrt (w3))) m<-v%*%(T0%*%beta0+ t (w3*X)%*%z3) beta3<- c ( rmvnorm (1,m,v)) # Store if (i> burn & i%%thin==0) { j<-(i-burn)/thin Beta[j,]<- c (beta2,beta3) } if (i%%100==0) print (i) } proc.time ()-tmp # MCMC run time = 2.5 seconds to run 1000 iterations ✺✺ ✴ ✶✻✵

  46. ❘❡s✉❧ts ❚❤❡ r❡s✉❧ts✱ ❜❛s❡❞ ♦♥ ✶✵✵✵ ✐t❡r❛t✐♦♥s ✇✐t❤ ❛ ❜✉r♥✲✐♥ ♦❢ ✺✵✵✱ ❛r❡✿ ❚❛❜❧❡ ✻✿ ❘❡s✉❧ts ❢♦r ▼✉❧t✐♥♦♠✐❛❧ ▲♦❣✐t ▼♦❞❡❧✳ ❚r✉❡ P♦st❡r✐♦r ▼❡❛♥ ✭❙❉✮ † P❛r❛♠❡t❡r ❱❛❧✉❡ ▼▲❊ ✭❙❊✮ β ✶✵ ✶ ✶ . ✵✵ ( ✵ . ✶✷ ) ✶ . ✵✵ ( ✵ . ✶✸ ) β ✶✶ − ✵ . ✺ − ✵ . ✹✷ ( ✵ . ✶✽ ) − ✵ . ✹✶ ( ✵ . ✶✽ ) β ✷✵ ✵ . ✺ ✵ . ✹✾ ( ✵ . ✶✸ ) ✵ . ✺✵ ( ✵ . ✶✹ ) β ✷✶ ✵ . ✺ ✵ . ✺✷ ( ✵ . ✶✽ ) ✵ . ✺✸ ( ✵ . ✶✾ ) † ❇❛s❡❞ ♦♥ P♦❧s♦♥ ❡t ❛❧✳ Pó❧②❛✲●❛♠♠❛ s❛♠♣❧❡r✳ ✺✻ ✴ ✶✻✵

  47. ❇❛②❡s✐❛♥ ■♥❢❡r❡♥❝❡ ❢♦r ◆❡❣❛t✐✈❡ ❇✐♥♦♠✐❛❧ ▼♦❞❡❧ P✐❧❧♦✇ ❛♥❞ ❙❝♦tt ✭✷✵✶✷✮ ❡①t❡♥❞ t❤❡ Pó❧②❛✲●❛♠♠❛ s❛♠♣❧❡r t♦ ♥❡❣❛t✐✈❡ ❜✐♥♦♠✐❛❧ ✭◆❇✮ r❡❣r❡ss✐♦♥ s❡tt✐♥❣ ❈♦♥s✐❞❡r t❤❡ ❢♦❧❧♦✇✐♥❣ ♠♦❞❡❧ ❢♦r ❛ ❝♦✉♥t r✳✈✳ Y i ✿ Γ( y i + r ) d Γ( r ) y i ! ( ✶ − ψ i ) r ψ y i p ( y i | r , β ) = i , r > ✵ , ✇❤❡r❡ � � ❡①♣ ① T i β ❡①♣ ( η i ) � � = ψ i = ① T ✶ + ❡①♣ ( η i ) ✶ + ❡①♣ i β ◆♦t❡ t❤❛t t❤❡ ◆❇ ♣r♦❜❛❜✐❧✐t② ♣❛r❛♠❡t❡r ψ i ✐s ♣❛r❛♠❡t❡r✐③❡❞ ✉s✐♥❣ t❤❡ ❡①♣✐t ❢✉♥❝t✐♦♥ ❚❤✐s ❛❧❧♦✇s ✉s t♦ ❛♣♣❧② t❤❡ s❛♠❡ ♣r♦♣❡rt✐❡s ♦❢ t❤❡ Pó❧②❛✲●❛♠♠❛ ❞❡♥s✐t② ❛s ✐♥ t❤❡ ❧♦❣✐st✐❝ ❝❛s❡ ✺✼ ✴ ✶✻✵

  48. ❇❛②❡s✐❛♥ ■♥❢❡r❡♥❝❡ ❢♦r ◆❡❣❛t✐✈❡ ❇✐♥♦♠✐❛❧ ▼♦❞❡❧ ❚❤❡ ♠❡❛♥ ❛♥❞ ✈❛r✐❛♥❝❡ ♦❢ Y i ❛r❡ r ψ i ❊ ( Y i | r , β ) = = r ❡①♣ ( η i ) = µ i ✶ − ψ i r ψ i ❱❛r ( Y i | r , β ) = ( ✶ − ψ i ) ✷ = r ❡①♣ ( η i ) [ ✶ + ❡①♣ ( η i )] = µ i ( ✶ + µ i / r ) ❚❤❡ ♣❛r❛♠❡t❡r α = ✶ / r ❝❛♣t✉r❡s t❤❡ ♦✈❡r❞✐s♣❡rs✐♦♥ ✐♥ t❤❡ ❞❛t❛✱ s✉❝❤ t❤❛t ❛s α → ∞ ✱ t❤❡ ❝♦✉♥ts ❜❡❝♦♠❡ ✐♥❝r❡❛s✐♥❣❧② ❞✐s♣❡rs❡❞ r❡❧❛t✐✈❡ t♦ t❤❡ P♦✐ss♦♥ ❞✐str✐❜✉t✐♦♥ ✺✽ ✴ ✶✻✵

  49. ❇❛②❡s✐❛♥ ■♥❢❡r❡♥❝❡ ❢♦r ◆❡❣❛t✐✈❡ ❇✐♥♦♠✐❛❧ ▼♦❞❡❧ ❊①♣❧♦✐t✐♥❣ t❤❡ ❡❛r❧✐❡r ♣r♦♣❡rt② ♦❢ t❤❡ Pó❧②❛✲●❛♠♠❛ ❞✐str✐❜✉t✐♦♥✱ ✐t ❢♦❧❧♦✇s t❤❛t � ∞ ❡ − ω i η ✷ ❡ κ i η i i / ✷ p ( ω i | r + y i , ✵ ) ❞ ω i , p ( Y i | r , β ) ∝ ✵ ✇❤❡r❡ κ i = ( y i − r ) / ✷ ❛♥❞ t❤❡ ω i ✬s ❛r❡ ✐♥❞❡♣❡♥❞❡♥t❧② ❞✐str✐❜✉t❡❞ ❛❝❝♦r❞✐♥❣ t♦ P● ( y i + r , η i ) ✳ ✺✾ ✴ ✶✻✵

  50. ❇❛②❡s✐❛♥ ■♥❢❡r❡♥❝❡ ❢♦r ◆❡❣❛t✐✈❡ ❇✐♥♦♠✐❛❧ ▼♦❞❡❧ ❋♦❧❧♦✇✐♥❣ P✐❧❧♦✇ ❛♥❞ ❙❝♦tt✱ t❤❡ ❢✉❧❧ ❝♦♥❞✐t✐♦♥❛❧ ❢♦r β ✐s � � − ✶ ✷ ( ③ − ❳ β ) T ❲ ( ③ − ❳ β ) p ( β | ② , r , ω ) ∝ π ( β ) ❡①♣ , ✇❤❡r❡ • ③ ✐s ❛♥ n × ✶ ✈❡❝t♦r ✇✐t❤ ❡❧❡♠❡♥ts z i = y i − r ✷ ω i • ❲ = ❞✐❛❣ ( ω i ) ✻✵ ✴ ✶✻✵

  51. ●✐❜❜s ❙❛♠♣❧❡r ❢♦r ◆❡❣❛t✐✈❡ ❇✐♥♦♠✐❛❧ ▼♦❞❡❧ ●✐✈❡♥ ❝✉rr❡♥t ✈❛❧✉❡s ❢♦r β ❛♥❞ r ✱ t❤❡ ●✐❜❜s s❛♠♣❧❡r ❢♦r t❤❡ ◆❇ ♠♦❞❡❧ ♣r♦❝❡❡❞s ❛s ❢♦❧❧♦✇s✿ ✶ ❋♦r i = ✶ , . . . , n ✱ ❞r❛✇ ω i ❢r♦♠ ✐ts P● ( y i + r , η i ) ❞✐str✐❜✉t✐♦♥✱ ✇❤❡r❡ η i = ① T i β ✷ ❋♦r i = ✶ , . . . , n ✱ ❞❡✜♥❡ z i = y i − r ✷ ω i � � β ✵ , ❚ − ✶ ✸ ❆ss✉♠✐♥❣ ❛ ◆ p ♣r✐♦r✱ ✉♣❞❛t❡ β ❢r♦♠ ✐ts ◆ p ( ♠ , ❱ ) ❢✉❧❧ ✵ ❝♦♥❞✐t✐♦♥❛❧✱ ✇❤❡r❡ � � − ✶ ❚ ✵ + ❳ T ❲ ❳ ❱ = � � ❚ ✵ β ✵ + ❳ T ❲ ③ ♠ = ❱ ✹ ❯♣❞❛t❡ r ✉s✐♥❣ ❛ r❛♥❞♦♠✲✇❛❧❦ ▼❡tr♦♣♦❧✐s✲❍❛st✐♥❣s st❡♣ ✇✐t❤ ❛ ③❡r♦✲tr✉♥❝❛t❡❞ ♥♦r♠❛❧ ♣r♦♣♦s❛❧ ❞❡♥s✐t②✳ ❆❧t❡r♥❛t✐✈❡❧②✱ ✉♣❞❛t❡ r ✉s✐♥❣ ❛ ❝♦♥❥✉❣❛t❡ ●❛♠♠❛ ❞✐str✐❜✉t✐♦♥ ❛s ❞❡s❝r✐❜❡❞ ✐♥ ❉❛❞❛♥❡❤ ❡t ❛❧✳ ✭✷✵✶✽✮ ❙❡❡ ◆❇❴▼❍✳r ❛♥❞ ◆❇❴●✐❜❜s✳r ❢♦r ❞❡t❛✐❧s ✻✶ ✴ ✶✻✵

  52. ❈♦♥❥✉❣❛t❡ ●✐❜❜s ❯♣❞❛t❡ ❢♦r r ✿ ❙t❡♣ ✶ ❩❤♦✉ ❛♥❞ ❈❛r✐♥ ✭✷✵✶✺✮ ❛♥❞ ❉❛❞❛♥❡❤ ❡t ❛❧✳ ✭✷✵✶✽✮ ❞❡s❝r✐❜❡ ❛ t✇♦✲st❡♣ ❝♦♥❥✉❣❛t❡ ●✐❜❜s ✉♣❞❛t❡ ❢♦r r ❚❤❡ ❛♣♣r♦❛❝❤ ✐♥tr♦❞✉❝❡s ❛ s❛♠♣❧❡ ♦❢ ❧❛t❡♥t ❝♦✉♥ts ✱ l i ✱ ✉♥❞❡r❧②✐♥❣ ❡❛❝❤ ♦❜s❡r✈❡❞ ❝♦✉♥t y i ❈♦♥❞✐t✐♦♥❛❧ ♦♥ y i ❛♥❞ r ✱ l i ❤❛s ❛ ❞✐str✐❜✉t✐♦♥ ❞❡✜♥❡❞ ❜② ❛ ❈❤✐♥❡s❡ r❡st❛✉r❛♥t t❛❜❧❡ ✭❈❘❚✮ ❞✐str✐❜✉t✐♦♥✿ � y i l i = u j j = ✶ � � r u j ∼ ❇❡r♥ . r + j − ✶ ❚❤❡ ♥❛♠❡ ✏❈❤✐♥❡s❡ r❡st❛✉r❛♥t t❛❜❧❡✑ ❞❡r✐✈❡s ❢r♦♠ t❤❡ ❢❛❝t t❤❛t u j = ✶ ✐❢ ❛ ♥❡✇ ❝✉st♦♠❡r s✐ts ❛♥❞ ❛♥ ✉♥♦❝❝✉♣✐❡❞ t❛❜❧❡ ✐♥ ❛ ❈❤✐♥❡s❡ r❡st❛✉r❛♥t ✭❛❝❝♦r❞✐♥❣ t♦ ❛ s♦✲❝❛❧❧❡❞ ✏❈❤✐♥❡s❡ r❡st❛✉r❛♥t ♣r♦❝❡ss✑✮✱ ❛♥❞ l i ✐s t❤❡ t♦t❛❧ ♥✉♠❜❡r ♦❢ ♦❝❝✉♣✐❡❞ t❛❜❧❡s ✐♥ t❤❡ r❡st❛✉r❛♥t ❛❢t❡r y i ❝✉st♦♠❡rs ❙♦ ✐♥ ❙t❡♣ ✶✱ ✇❡ ❞r❛✇ l i ( i = ✶ , . . . , n ) ❛❝❝♦r❞✐♥❣ t♦ t❤✐s ❈❘❚ ❞✐str✐❜✉t✐♦♥ ✻✷ ✴ ✶✻✵

  53. ❈♦♥❥✉❣❛t❡ ●✐❜❜s ❯♣❞❛t❡ ❢♦r r ✿ ❙t❡♣ ✷ ■♥ ❙t❡♣ ✷✱ t❤❡ ❛✉t❤♦rs ❡①♣❧♦✐t t❤❡ ❢❛❝t t❤❛t t❤❡ ◆❇ ❞✐str✐❜✉t✐♦♥ ❝❛♥ ❜❡ ❞❡r✐✈❡❞ ❢r♦♠ ❛ r❛♥❞♦♠ ❝♦♥✈♦❧✉t✐♦♥ ♦❢ ❧♦❣❛r✐t❤♠✐❝ ❘❱s ❙♣❡❝✐✜❝❛❧❧②✱ t❤❡② ♥♦t❡ t❤❛t✱ ❝♦♥❞✐t✐♦♥❛❧ ♦♥ r ❛♥❞ ψ i ✱ ind l i ∼ P♦✐ [ − r ❧♥ ( ✶ − ψ i )] , ✇❤❡r❡ � � ❡①♣ ① T i β ψ i = � � , i = ✶ , . . . , n . ✶ + ❡①♣ ① T i β ❙❡❡ ❉❛❞❛♥❡❤ ❡t ❛❧✳ ✭✷✵✶✽✮ ❛♥❞ ❩❤♦✉ ❛♥❞ ❈❛r✐♥ ✭✷✵✶✺✮ ❢♦r ❞❡t❛✐❧s ❚❤✉s✱ ✐❢ ✇❡ ❛ss✉♠❡ ❛ ●❛ ( a , b ) ♣r✐♦r ❢♦r r ✱ t❤❡♥ t❤❡ ❢✉❧❧ ❝♦♥❞✐t✐♦♥❛❧ ❢♦r r ✐♥ ❙t❡♣ ✷ ✐s � � � n � n r | ❧ , ψ ∼ ●❛ a + l i , b − ❧♥ ( ✶ − ψ i ) , i = ✶ i = ✶ ✇❤❡r❡ ❧ = ( l ✶ , . . . , l n ) T ❛♥❞ ψ = ( ψ ✶ , . . . , ψ n ) T ✳ ❚❤❡ ●✐❜❜s ✉♣❞❛t❡ ✜rst ❞r❛✇s l i ( i = ✶ , . . . , n ) ✐♥❞❡♣❡♥❞❡♥t❧② ❢r♦♠ ❛ ❈❘❚ ❞✐str✐❜✉t✐♦♥✱ ❛♥❞ t❤❡♥ r ❢r♦♠ ✐ts ❢✉❧❧ ❝♦♥❞✐t✐♦♥❛❧ ●❛♠♠❛ ❞✐str✐❜✉t✐♦♥ ❣✐✈❡♥ ❧ ❛♥❞ ψ ✻✸ ✴ ✶✻✵

  54. ❘ ❈♦❞❡ ❢♦r ◆❡❣❛t✐✈❡ ❇✐♥♦♠✐❛❧ ▼♦❞❡❧ ✇✐t❤ ▼❍ ❯♣❞❛t❡ ❢♦r r Hybrid Gibbs-MH Sampler for Negative Binomial Model # Priors (diffuse prior for r) beta0<- rep (0,p) T0<- diag (.01,p) s<-0.01 # Proposal variance -- NOTE: may need to lower this as n_i increases # Inits and Store beta<- rep (0,p) Acc<-0 # MH Acceptance counter ######## # MCMC # ######## for (i in 1:nsim){ # Update r eta<-X%*%beta q<-1/(1+ exp (eta)) # dnbinom fn uses q=1-psi rnew<- rtnorm (1,r, sqrt (s),lower=0) # Proposal ratio<- sum ( dnbinom (y,rnew,q,log=T))- sum ( dnbinom (y,r,q,log=T))+ # Likelihood -- diffuse prior for r dtnorm (rnew,r, sqrt (s),0,log=T)- dtnorm (r,rnew, sqrt (s),0,log=T) # Proposal not symmetric if ( log ( runif (1))<ratio) { r<-rnew Acc<-Acc+1 } # Update beta w<- rpg (n,y+r,eta) # Polya weights z<-(y-r)/(2*w) # Latent response v<- solve ( crossprod (X* sqrt (w))+T0) m<-v%*%(T0%*%beta0+ t ( sqrt (w)*X)%*%( sqrt (w)*z)) beta<- c ( rmvnorm (1,m,v)) # Store if (i> burn & i%%thin==0) { j<-(i-burn)/thin Beta[j,]<-beta R[j]<-r } if (i%%100==0) print (i) # 11 seconds to run 2000 iterations with n=1000 } ✻✹ ✴ ✶✻✵

  55. ❘ ❈♦❞❡ ❢♦r ◆❇ ▼♦❞❡❧ ✇✐t❤ ●✐❜❜s ❯♣❞❛t❡ ❢♦r r Negative Binomial Sampler with Gibbs Update for r beta0<- rep (0,p) T0<- diag (.01,p) a<-b<-0.01 # Gamma hyperparms for r # Inits and Store beta<- rep (0,p) l<- rep (0,n) # Latent counts r<-1 ######## # MCMC # ######## for (i in 1:nsim){ # Update latent counts, l, using CRT distribution for(j in 1:n) l[j]<- sum ( rbinom (y[j],1, round (r/(r+1:y[j]-1),6))) # Could try to avoid loop # Rounding avoids numerical instability # Update r from conjugate gamma distribution given l and beta eta<-X%*%beta psi<- exp (eta)/(1+ exp (eta)) r<- rgamma (1,a+ sum (l),b- sum ( log (1-psi))) # Update beta w<- rpg (n,y+r,eta) # Polya weights z<-(y-r)/(2*w) # Latent response v<- solve ( crossprod (X* sqrt (w))+T0) m<-v%*%(T0%*%beta0+ t ( sqrt (w)*X)%*%( sqrt (w)*z)) beta<- c ( rmvnorm (1,m,v)) # Store if (i> burn & i%%thin==0) { j<-(i-burn)/thin Beta[j,]<-beta R[j]<-r } if (i%%100==0) print (i) # 21 seconds to run 2000 iterations with n=1000 } ✻✺ ✴ ✶✻✵

  56. ❊①❛♠♣❧❡ ❚❤❡ ♣r♦❣r❛♠ ◆❇✳r ✜ts t❤❡ ❢♦❧❧♦✇✐♥❣ ◆❇ ♠♦❞❡❧✿ Γ( y i + r ) d Γ( r ) y i ! ( ✶ − ψ i ) r ψ y i p ( y i | r , β ) = i , r > ✵ , ✇❤❡r❡ ❡①♣ ( β ✵ + β ✶ x i ) ψ i = ✶ + ❡①♣ ( β ✵ + β ✶ x i ) ❚❤❡ r❡s✉❧ts✱ ❜❛s❡❞ ♦♥ ✷✵✵✵ ✐t❡r❛t✐♦♥s ✇✐t❤ ❛ ❜✉r♥✲✐♥ ♦❢ ✶✵✵✵✱ ❛r❡✿ ❚❛❜❧❡ ✼✿ ❘❡s✉❧ts ❢♦r ◆❇ ▼♦❞❡❧✳ ❚r✉❡ P♦st❡r✐♦r P♦st❡r✐♦r ▼❡❛♥ ✭❙❉✮ † ▼❡❛♥ ✭❙❉✮ ‡ P❛r❛♠❡t❡r ❱❛❧✉❡ ▼▲❊ ✭❙❊✮ β ✶ ✶ . ✵ ✵ . ✾✸ ( ✵ . ✵✽ ) ✵ . ✾✷ ( ✵ . ✵✽ ) ✵ . ✾✷ ( ✵ . ✵✼ ) β ✷ ✵ . ✺ ✵ . ✺✵ ( ✵ . ✵✹ ) ✵ . ✺✵ ( ✵ . ✵✹ ) ✵ . ✺✵ ( ✵ . ✵✹ ) ✶ . ✵ ✶ . ✶✵ ( ✵ . ✵✽ ) ✶ . ✶✵ ( ✵ . ✵✼ ) ✶ . ✶✶ ( ✵ . ✵✼ ) r † Pó❧②❛✲●❛♠♠❛ s❛♠♣❧❡r ✇✐t❤ ▼❍ ✉♣❞❛t❡ ❢♦r r ✳ ❆❝❝❡♣t❛♥❝❡ r❛t❡ ❂ ✸✼✪✳ ‡ Pó❧②❛✲●❛♠♠❛ s❛♠♣❧❡r ✇✐t❤ ●✐❜❜s ✉♣❞❛t❡ ❢♦r r ✳ ✻✻ ✴ ✶✻✵

  57. ❚r❛❝❡ P❧♦ts ❢♦r ◆❇ ▼♦❞❡❧ ✇✐t❤ ▼❍ ❯♣❞❛t❡ ❢♦r r 2.2 2.0 β 1 1.8 1.6 0 200 400 600 800 1000 Iteration 0.8 0.6 β 2 0.4 0.2 0 200 400 600 800 1000 Iteration 1.4 1.2 r 1.0 0.8 0 200 400 600 800 1000 Iteration ✻✼ ✴ ✶✻✵

  58. ❇❛②❡s✐❛♥ ■♥❢❡r❡♥❝❡ ❢♦r ❩❡r♦✲■♥✢❛t❡❞ ❈♦✉♥t ❉❛t❛ ❩❡r♦✲✐♥✢❛t❡❞ ❝♦✉♥t ❞❛t❛ ❛r✐s❡ ✇❤❡♥ t❤❡ ❞❛t❛ ❝♦♥t❛✐♥ ❛ ❧❛r❣❡r ♣r♦♣♦rt✐♦♥ ♦❢ ③❡r♦s t❤❛♥ ♣r❡❞✐❝t❡❞ ❜② ❛♥ ♦r❞✐♥❛r② ❝♦✉♥t ♠♦❞❡❧ s✉❝❤ ❛s t❤❡ ◆❇ ❩❡r♦✲✐♥✢❛t❡❞ ♠♦❞❡❧s ❤❛✈❡ ❜❡❡♥ ♣r♦♣♦s❡❞ t♦ ❛❞❞r❡ss t❤❡ ♦✈❡r✲❛❜✉♥❞❛♥❝❡ ♦❢ ③❡r♦s ❩❡r♦✲✐♥✢❛t❡❞ ♠♦❞❡❧s ❛r❡ ♠✐①t✉r❡s ♦❢ ❛ ♣♦✐♥t ♠❛ss ❛t ③❡r♦✱ r❡♣r❡s❡♥t✐♥❣ t❤❡ ❡①❝❡ss ③❡r♦s✱ ❛♥❞ ❛ ❝♦✉♥t ❞✐str✐❜✉t✐♦♥ ❢♦r t❤❡ r❡♠❛✐♥✐♥❣ ✈❛❧✉❡s ❇② ❝♦♥str✉❝t✐♦♥✱ ③❡r♦✲✐♥✢❛t❡❞ ♠♦❞❡❧s ♣❛rt✐t✐♦♥ ③❡r♦s ✐♥t♦ t✇♦ t②♣❡s✿ • ❙tr✉❝t✉r❛❧ ③❡r♦s ❝♦rr❡s♣♦♥❞✐♥❣ t♦ ✐♥❞✐✈✐❞✉❛❧s ✇❤♦ ❛r❡ ♥♦t ❛t r✐s❦ ❢♦r ❛♥ ❡✈❡♥t✱ ❛♥❞ t❤❡r❡❢♦r❡ ❤❛✈❡ ♥♦ ♦♣♣♦rt✉♥✐t② ❢♦r ❛ ♣♦s✐t✐✈❡ ❝♦✉♥t • ❆t✲r✐s❦ ③❡r♦s✱ ✇❤✐❝❤ ❛♣♣❧② t♦ ❛ ❧❛t❡♥t ❝❧❛ss ♦❢ ✐♥❞✐✈✐❞✉❛❧s ✇❤♦ ❛r❡ ❛t r✐s❦ ❢♦r ❛♥ ❡✈❡♥t ❜✉t ♥❡✈❡rt❤❡❧❡ss ❤❛✈❡ ❛♥ ♦❜s❡r✈❡❞ r❡s♣♦♥s❡ ♦❢ ③❡r♦ ✻✽ ✴ ✶✻✵

  59. ❩❡r♦✲■♥✢❛t❡❞ ◆❡❣❛t✐✈❡ ❇✐♥♦♠✐❛❧ ▼♦❞❡❧ ❈♦♥s✐❞❡r t❤❡ ❢♦❧❧♦✇✐♥❣ ③❡r♦✲✐♥✢❛t❡❞ ♥❡❣❛t✐✈❡ ❜✐♥♦♠✐❛❧ ✭❩■◆❇✮ ♠♦❞❡❧ ( ✶ − φ i ) + φ i ( ✶ − ψ i ) r Pr ( Y i = ✵ ) = Γ( y i + r ) Γ( r ) y i ! ( ✶ − ψ i ) r ψ y i Pr ( Y i = y i ) = φ i i , y i = ✶ , ✷ , . . . � � ① T ❡①♣ i β ❡①♣ ( η i ) � � = ψ i = ✶ + ❡①♣ ① T ✶ + ❡①♣ ( η i ) i β ❚❤❡ ♣❛r❛♠❡t❡r φ i ❞❡♥♦t❡s t❤❡ ♣r♦❜❛❜✐❧✐t② ♦❢ ❜❡❧♦♥❣✐♥❣ t♦ t❤❡ ✏❛t✲r✐s❦✑ ❝❧❛ss ✶ − φ i ❞❡♥♦t❡s t❤❡ ♣r♦❜❛❜✐❧✐t② ♦❢ ❛♥ ❡①❝❡ss ✭✐✳❡✳✱ str✉❝t✉r❛❧✮ ③❡r♦ ✻✾ ✴ ✶✻✵

  60. ❇❛②❡s✐❛♥ ■♥❢❡r❡♥❝❡ ❢♦r ❩❡r♦✲■♥✢❛t❡❞ ❈♦✉♥t ❉❛t❛ ❲❡ ❝❛♥ r❡✇r✐t❡ t❤❡ ❩■◆❇ ♠♦❞❡❧ ❜② ✐♥tr♦❞✉❝✐♥❣ ❛ ❧❛t❡♥t ✏❛t✲r✐s❦✑ ✐♥❞✐❝❛t♦r ✈❛r✐❛❜❧❡✱ W i ✱ Y i ∼ ( ✶ − φ i ) ✶ ( W i = ✵ ∧ Y i = ✵ ) + φ i ◆❇ ( µ i , r ) ✶ ( W i = ✶ ) , i = ✶ , . . . , n ❈♦♠♠❡♥ts✿ • ❲✐t❤ ♣r♦❜❛❜✐❧✐t② ✶ − φ i ✱ W i = Y i = ✵ ✭str✉❝t✉r❛❧ ③❡r♦✮ • ❲✐t❤ ♣r♦❜❛❜✐❧✐t② φ i ✱ W i = ✶ ❛♥❞ Y i ✐s ❞r❛✇♥ ❢r♦♠ ❛ ◆❇ ❞✐str✐❜✉t✐♦♥ ✇✐t❤ ♠❡❛♥ µ i ❛♥❞ ❞✐s♣❡rs✐♦♥ ♣❛r❛♠❡t❡r r > ✵ • µ i = ❊ ( Y i | β , r , W i = ✶ ) ✐s t❤❡ ♠❡❛♥ ❝♦✉♥t ❛♠♦♥❣ t❤♦s❡ ✐♥ t❤❡ ❛t✲r✐s❦ ❝❧❛ss ✭❝♦♥❞✐t✐♦♥❛❧ ♦♥ W i ❂✶✮ • r ❝❛♣t✉r❡s ♦✈❡r❞✐s♣❡rs✐♦♥ ✐♥ t❤❡ ❛t✲r✐s❦ ❝❧❛ss • ❚❤❡ ♦✈❡r❛❧❧ ✭✉♥❝♦♥❞✐t✐♦♥❛❧✮ ♠❡❛♥ ✐s ❊ ( Y i | β , r ) = φ i µ i • ■❢ φ i = ✶✱ t❤❡ ❩■◆❇ r❡❞✉❝❡s t♦ ❛♥ ◆❇ ♠♦❞❡❧ • ✐❢ φ i = ✵✱ ✇❡ ❤❛✈❡ ❛ ♣♦✐♥t ♠❛ss ❛t ③❡r♦ ✼✵ ✴ ✶✻✵

  61. ❩❡r♦✲■♥✢❛t❡❞ ◆❡❣❛t✐✈❡ ❇✐♥♦♠✐❛❧ ▼♦❞❡❧ ❚②♣✐❝❛❧❧②✱ ✇❡ ♠♦❞❡❧ φ i ✉s✐♥❣ ❛ ❧♦❣✐t ♠♦❞❡❧ ❛♥❞ Y i | W i = ✶ ✉s✐♥❣ ❛ ◆❇ ♠♦❞❡❧✿ ❧♦❣✐t [ Pr ( W i = ✶ | α )] = ① T ❧♦❣✐t ( φ i ) = i α = η ✶ i Γ( y i + r ) d Γ( r ) y i ! ( ✶ − ψ i ) r ψ y i p ( y i | r , β , W i = ✶ ) = ∀ i s✳t✳ W i = ✶ , ✇❤❡r❡ i � � ① T ❡①♣ i β ❡①♣ ( η ✷ i ) � � = ψ i = ✶ + ❡①♣ ( η ✷ i ) . ① T ✶ + ❡①♣ i β ✼✶ ✴ ✶✻✵

  62. ●✐❜❜s ❙❛♠♣❧❡r ❢♦r ❩■◆❇ ▼♦❞❡❧ ❚❤✐s s✉❣❣❡sts t❤❡ ❢♦❧❧♦✇✐♥❣ ●✐❜❜s s❛♠♣❧❡r✿ ✶ ●✐✈❡♥ ❝✉rr❡♥t ♣❛r❛♠❡t❡r ✈❛❧✉❡s✱ ✉♣❞❛t❡ α ✉s✐♥❣ t❤❡ ●✐❜❜s s❛♠♣❧❡r ♣r♦♣♦s❡❞ ❜② P♦❧s♦♥ ❡t ❛❧✳ ❢♦r ❧♦❣✐st✐❝ r❡❣r❡ss✐♦♥ ✷ ❈♦♥❞✐t✐♦♥❛❧ ♦♥ W i = ✶✱ ✉♣❞❛t❡ β ✉s✐♥❣ t❤❡ ◆❇ ●✐❜❜s s❛♠♣❧❡r ♣r♦♣♦s❡❞ ❜② P✐❧❧♦✇ ❛♥❞ ❙❝♦tt ✸ ❯♣❞❛t❡ r ✉s✐♥❣ ❛ r❛♥❞♦♠✲✇❛❧❦ ▼❡tr♦♣♦❧✐s✲❍❛st✐♥❣s st❡♣ ♦r ✉s✐♥❣ ❛ ❝♦♥❥✉❣❛t❡ ●❛♠♠❛ ✉♣❞❛t❡ ❛s ✐♥ ❉❛❞❡♥❡❤ ❡t ❛❧✳ ✭✷✵✶✽✮ ✹ ❯♣❞❛t❡ t❤❡ ❧❛t❡♥t ❛t✲r✐s❦ ✐♥❞✐❝❛t♦rs✱ W ✶ , . . . , W n ✱ ❢r♦♠ t❤❡✐r ❞✐s❝r❡t❡ ❢✉❧❧ ❝♦♥❞✐t✐♦♥❛❧ ❞✐str✐❜✉t✐♦♥s ❚❤❡ ♦♥❧② ♥❡✇ st❡♣ ✐s st❡♣ ✭✹✮✱ t❤❡ ✉♣❞❛t❡ ❢♦r W i ✼✷ ✴ ✶✻✵

  63. ❯♣❞❛t❡ ❢♦r W i ❚❤❡ ❢✉❧❧ ❝♦♥❞✐t✐♦♥❛❧ ❢♦r W i ✐s ❛ ❞✐s❝r❡t❡ ❞✐str✐❜✉t✐♦♥ ✇✐t❤ ♣r♦❜❛❜✐❧✐t✐❡s t❤❛t ❞❡♣❡♥❞ ♦♥ ✇❤❡t❤❡r t❤❡ ♦❜s❡r✈❡❞ ❝♦✉♥t✱ y i ✱ ✐s ③❡r♦ ♦r ♥♦♥✲③❡r♦ ■❢ y i > ✵✱ t❤❡♥ s✉❜❥❡❝t i ❜❡❧♦♥❣s t♦ t❤❡ ❛t✲r✐s❦ ❝❧❛ss✱ ❛♥❞ ❤❡♥❝❡ ❜② ❞❡✜♥✐t✐♦♥✱ W i = ✶ ✇✐t❤ ♣r♦❜❛❜✐❧✐t② ✶ ❈♦♥✈❡rs❡❧②✱ ✐❢ y i = ✵✱ t❤❡♥ ✇❡ ♦❜s❡r✈❡ ❡✐t❤❡r ❛ str✉❝t✉r❛❧ ③❡r♦ ✭✐♠♣❧②✐♥❣ t❤❛t W i = ✵✮ ♦r ❛♥ ❛t✲r✐s❦ ③❡r♦ ✭✐♠♣❧②✐♥❣ W i = ✶✮ ❙❡❡ ◆❡❡❧♦♥ ✭✷✵✶✽✮ ❢♦r ❞❡t❛✐❧s ✼✸ ✴ ✶✻✵

  64. ❯♣❞❛t❡ ❢♦r W i ∗ ■♥ t❤❡ ❧❛tt❡r ❝❛s❡✱ ✇❡ ❞r❛✇ W i ❢r♦♠ ❛ ❇❡r♥♦✉❧❧✐ ❞✐str✐❜✉t✐♦♥ ✇✐t❤ ♣r♦❜❛❜✐❧✐t② θ i = Pr ( W i = ✶ | y i = ✵ , r❡st ) = Pr ( ❛t✲r✐s❦ ③❡r♦ | ❛t r✐s❦ ♦r str✉❝t✉r❛❧ ③❡r♦ ) φ i υ r i = i ) , ✶ − φ i ( ✶ − υ r ✇❤❡r❡ • φ i = ❡①♣ ( η ✶ i ) / [ ✶ + ❡①♣ ( η ✶ i )] ✐s t❤❡ ✉♥❝♦♥❞✐t✐♦♥❛❧ ♣r♦❜❛❜✐❧✐t② t❤❛t W i = ✶ • υ i = ✶ − ψ i ✱ ✇❤❡r❡ ψ i ✐s t❤❡ ◆❇ ❡✈❡♥t ♣r♦❜❛❜✐❧✐t② ❙❡❡ ❩■◆❇✳r ❢♦r ❞❡t❛✐❧s ✼✹ ✴ ✶✻✵

  65. ❊①❛♠♣❧❡ ❉❛t❛ ❍✐st♦❣r❛♠ 60 AIC for ZINB is 104 points lower than for NB model 50 40 Percent 30 20 10 0 0 2 4 6 8 11 14 17 20 23 26 29 32 35 38 44 60 Count ✼✺ ✴ ✶✻✵

  66. ❍②❜r✐❞ ●✐❜❜s✲▼❍ ❆❧❣♦r✐t❤♠ ❢♦r ❩■◆❇ ▼♦❞❡❧ Hybrid Gibbs-MH Sampler for the ZINB Model for (i in 1:nsim){ # Update alpha mu<-X%*%alpha w<- rpg (n,1,mu) z<-(y1-1/2)/w # Latent response v<- solve ( crossprod (X* sqrt (w))+T0a) m<-v%*%(T0a%*%alpha0+ t (w*X)%*%z) alpha<- c ( rmvnorm (1,m,v)) # Update latent class indicator y1 (= W in slides) eta<-X%*%alpha phi<- exp (eta)/(1+ exp (eta)) # At-risk probability theta<-phi*(q^r)/(phi*(q^r)+1-phi) # Cond prob that y1=1 given y=0 -- i.e. Pr(chance zero|observed y1[y==0]<- rbinom (n0,1,theta[y==0]) # If y=0, draw "chance zero" w.p. theta; if y=1, then y1=1 n1<- sum (y1) # Update beta conditional on y1=1 eta1<-X[y1==1,]%*%beta w<- rpg (n1,y[y1==1]+r,eta1) # Polya weights z<-(y[y1==1]-r)/(2*w) # Latent response v<- solve ( crossprod (X[y1==1,]* sqrt (w))+T0b) m<-v%*%(T0b%*%beta0+ t ( sqrt (w)*X[y1==1,])%*%( sqrt (w)*z)) beta<- c ( rmvnorm (1,m,v)) eta<-X%*%beta q<-1/(1+ exp (eta)) # Update r rnew<- rtnorm (1,r, sqrt (s),lower=0) ratio<- sum ( dnbinom (y[y1==1],rnew,q[y1==1],log=T))- sum ( dnbinom (y[y1==1],r,q[y1==1],log=T))+ # Diffuse prior dtnorm (r,rnew, sqrt (s),0,log=T) - dtnorm (rnew,r, sqrt (s),0,log=T) if ( log ( runif (1))<ratio) { r<-rnew Acc<-Acc+1 } # Store if (i> burn & i%%thin==0) { j<-(i-burn)/thin Alpha[j,]<-alpha Beta[j,]<-beta R[j]<-r } if (i%%100==0) print (i) # 11 seconds to run 2000 iterations with n=1000 } ✼✻ ✴ ✶✻✵

  67. ❘ ❈♦❞❡ ❢♦r ❩■◆❇ ▼♦❞❡❧ ✇✐t❤ ●✐❜❜s ❯♣❞❛t❡ ❢♦r r Gibbs Sampler for ZINB Model for (i in 1:nsim){ # Update alpha mu<-X%*%alpha w<- rpg (n,1,mu) z<-(y1-1/2)/w # Latent response v<- solve ( crossprod (X* sqrt (w))+T0a) m<-v%*%(T0a%*%alpha0+ t (w*X)%*%z) alpha<- c ( rmvnorm (1,m,v)) # Update latent class indicator y1 (= W in slides) eta<-X%*%alpha phi<- exp (eta)/(1+ exp (eta)) # At-risk probability theta<-phi*(q^r)/(phi*(q^r)+1-phi) # Cond prob that y1=1 given y=0 -- i.e. Pr(chance zero|observed y1[y==0]<- rbinom (n0,1,theta[y==0]) # If y=0, draw "chance zero" w.p. theta; if y=1, then y1=1 n1<- sum (y1) # Update beta conditional on y1=1 eta1<-X[y1==1,]%*%beta w<- rpg (n1,y[y1==1]+r,eta1) # Polya weights z<-(y[y1==1]-r)/(2*w) # Latent response v<- solve ( crossprod (X[y1==1,]* sqrt (w))+T0b) m<-v%*%(T0b%*%beta0+ t ( sqrt (w)*X[y1==1,])%*%( sqrt (w)*z)) beta<- c ( rmvnorm (1,m,v)) eta<-X%*%beta q<-1/(1+ exp (eta)) # Update latent counts, l l<- rep (0,n1) ytmp<-y[y1==1] for(j in 1:n1) l[j]<- sum ( rbinom (ytmp[j],1, round (r/(r+1:ytmp[j]-1),6))) # Update r from conjugate gamma distribution given l and psi eta<-X[y1==1,]%*%beta psi<- exp (eta)/(1+ exp (eta)) r<- rgamma (1,a+ sum (l),b- sum ( log (1-psi))) # Store if (i> burn & i%%thin==0) { j<-(i-burn)/thin Alpha[j,]<-alpha Beta[j,]<-beta R[j]<-r } if (i%%100==0) print (i) # 15 seconds to run 2000 iterations with n=1000 } ✼✼ ✴ ✶✻✵

  68. ❊①❛♠♣❧❡ ❚❤❡ ♣r♦❣r❛♠ ❩■◆❇✳r ✜ts t❤❡ ❢♦❧❧♦✇✐♥❣ ❩■◆❇ ♠♦❞❡❧✿ ❧♦❣✐t ( φ i ) = α ✶ + α ✷ x i Γ( y i + r ) d Γ( r ) y i ! ( ✶ − ψ i ) r ψ y i p ( y i | r , β , W i = ✶ ) = ∀ i s✳t✳ W i = ✶ , ✇❤❡r❡ i ❡①♣ ( β ✶ + β ✷ x i ) ψ i = ✶ + ❡①♣ ( β ✶ + β ✷ x i ) ❚❤❡ r❡s✉❧ts✱ ❜❛s❡❞ ♦♥ ✷✵✵✵ ✐t❡r❛t✐♦♥s ✇✐t❤ ❛ ❜✉r♥✲✐♥ ♦❢ ✶✵✵✵✱ ❛r❡✿ ❚❛❜❧❡ ✽✿ ❘❡s✉❧ts ❢♦r ❩■◆❇ ▼♦❞❡❧✳ ❚r✉❡ P♦st❡r✐♦r P♦st❡r✐♦r ▼❡❛♥ ✭❙❉✮ † ▼❡❛♥ ✭❙❉✮ ‡ P❛r❛♠❡t❡r ❱❛❧✉❡ ▼▲❊ ✭❙❊✮ α ✶ − ✵ . ✺ − ✵ . ✻✸ ( ✵ . ✶✶ ) − ✵ . ✻✷ ( ✵ . ✶✵ ) − ✵ . ✻✹ ( ✵ . ✶✶ ) α ✷ ✵ . ✺ ✵ . ✺✻ ( ✵ . ✶✹ ) ✵ . ✺✺ ( ✵ . ✶✹ ) ✵ . ✺✼ ( ✵ . ✶✹ ) β ✶ ✷ . ✵ ✶ . ✾✹ ( ✵ . ✶✸ ) ✶ . ✾✻ ( ✵ . ✶✷ ) ✶ . ✾✹ ( ✵ . ✶✸ ) β ✷ ✵ . ✺ ✵ . ✸✽ ( ✵ . ✶✶ ) ✵ . ✸✾ ( ✵ . ✶✶ ) ✵ . ✸✾ ( ✵ . ✶✶ ) ✶ . ✵ ✶ . ✶✶ ( ✵ . ✶✸ ) ✶ . ✶✵ ( ✵ . ✶✶ ) ✶ . ✶✸ ( ✵ . ✶✸ ) r † Pó❧②❛✲●❛♠♠❛ s❛♠♣❧❡r ✇✐t❤ ▼❍ ✉♣❞❛t❡ ❢♦r r ✳ ❆❝❝❡♣t❛♥❝❡ r❛t❡ ❂ ✹✵✪✳ ‡ Pó❧②❛✲●❛♠♠❛ s❛♠♣❧❡r ✇✐t❤ ●✐❜❜s ✉♣❞❛t❡ ❢♦r r ✳ ✼✽ ✴ ✶✻✵

  69. ❚r❛❝❡ P❧♦ts ❢♦r ▼❍ ❩■◆❇ ▼♦❞❡❧ −0.3 1.0 −0.5 0.6 α 1 α 2 −0.7 0.2 −0.9 0 200 400 600 800 1000 0 200 400 600 800 1000 1:lastit 1:lastit 0.8 2.2 0.6 2.0 β 1 β 2 0.4 1.8 0.2 1.6 0 200 400 600 800 1000 0 200 400 600 800 1000 1:lastit 1:lastit 1.4 1.2 r 1.0 0.8 0 200 400 600 800 1000 1:lastit ✼✾ ✴ ✶✻✵

  70. ❚r❛❝❡ P❧♦ts ❢♦r ●✐❜❜s ❩■◆❇ ▼♦❞❡❧ −0.2 0.8 −0.6 α 1 α 2 0.4 −1.0 0.0 0 200 400 600 800 1000 0 200 400 600 800 1000 1:lastit 1:lastit 0.8 2.2 0.6 2.0 β 1 β 2 0.4 1.8 0.2 1.6 0 200 400 600 800 1000 0 200 400 600 800 1000 1:lastit 1:lastit 1.4 1.2 r 1.0 0.8 0 200 400 600 800 1000 1:lastit ✽✵ ✴ ✶✻✵

  71. ❇❛②❡s✐❛♥ ▼♦❞❡❧✐♥❣ ❙tr❛t❡❣✐❡s ❢♦r ●❡♥❡r❛❧✐③❡❞ ▲✐♥❡❛r ▼♦❞❡❧s✱ P❛rt ✷ ❘❡❛❞✐♥❣ ✿ ❍♦✛ ❙❡❝t✐♦♥ ✼✳✸❀ ❲❛❦❡✜❡❧❞ ❙❡❝t✐♦♥s ✶✵✳✺✳✶✱✶✶✳✷✳✽✱ ✶✶✳✷✳✾ ✭P❡♥❛❧✐③❡❞ ❘❡❣r❡ss✐♦♥✮❀ ❲❛❦❡✜❡❧❞ ❙❡❝t✐♦♥s ✽✳✻✱ ✽✳✼ ✭▲✐♥❡❛r ▼✐①❡❞ ▼♦❞❡❧s✮❀ ◆❡❡❧♦♥ ✭✷✵✶✽✮ ❙❡❝t✐♦♥s ✷✳✸✕✸✳✷❀ ❋rü❤✇✐rt❤✲❙❝❤♥❛tt❡r ❛♥❞ P②♥❡ ✭✷✵✶✵✮❀ ◆❡❡❧♦♥ ❡t ❛❧✳ ✭✷✵✶✺✮ ❋❛❧❧ ✷✵✶✽ ✽✶ ✴ ✶✻✵

  72. ❇❛②❡s✐❛♥ P❡♥❛❧✐③❡❞ ▲✐♥❡❛r ❙♣❧✐♥❡s ▲❡t✬s ❝♦♥s✐❞❡r t❤❡ ♣r♦❜❧❡♠ ♦❢ ♠♦❞❡❧✐♥❣ ❛ ♠❡❛♥ r❡s♣♦♥s❡ ✉s✐♥❣ ❛ ♣✐❡❝❡✇✐s❡ ❧✐♥❡❛r ✭P❲▲✮ s♣❧✐♥❡ ❢✉♥❝t✐♦♥ ❆s ❛♥ ✐❧❧✉str❛t✐♦♥✱ ❝♦♥s✐❞❡r t❤❡ ❢♦❧❧♦✇✐♥❣ s❝❛tt❡r♣❧♦t s❤♦✇✐♥❣ t❤❡ r❡❧❛t✐♦♥s❤✐♣ ❜❡t✇❡❡♥ ❛❣❡ ❛♥❞ ❧♦❣ ❈✲♣❡♣t✐❞❡ ❝♦♥❝❡♥tr❛t✐♦♥ ❛♠♦♥❣ ✹✸ ❞✐❛❜❡t✐❝ ❝❤✐❧❞r❡♥ ✷ ❚❤✐s ❡①❛♠♣❧❡ ✐s ❢♦r ✐♥❞❡♣❡♥❞❡♥t ❞❛t❛✱ ❜✉t t❤❡ ❛♣♣r♦❛❝❤ ❡❛s✐❧② ❡①t❡♥❞s t♦ r❡♣❡❛t❡❞ ♠❡❛s✉r❡s ❞❛t❛ ❋✐❣✉r❡ ✷✿ ❙❝❛tt❡r♣❧♦t ♦❢ ❧♦❣ ❈✲♣❡♣t✐❞❡ ❝♦♥❝❡♥tr❛t✐♦♥ ❜② ❛❣❡✳ ● 0.8 ● ● ● ● ● ● ● ● ● 0.7 ● ● ● ● ● ● ● Log Concentration ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0.6 ● ● ● ● ● ● ● 0.5 ● 0 2 4 6 8 10 12 14 16 Age (Y ears) ✷ ❝✳❢✳✱ ❋✐t③♠❛✉r✐❝❡ ❡t ❛❧✳✱ ❈❤❛♣t❡r ✶✾ ✽✷ ✴ ✶✻✵

  73. ❇❛②❡s✐❛♥ P❡♥❛❧✐③❡❞ ▲✐♥❡❛r ❙♣❧✐♥❡s ❚❤❡ ❣♦❛❧ ✐s t♦ ✢❡①✐❜❧② ♠♦❞❡❧ ❧♦❣ ♣❡♣t✐❞❡ ❝♦♥❝❡♥tr❛t✐♦♥ ❜② ❛❣❡ ❆ r❡❧❛t✐✈❡❧② s✐♠♣❧❡ ❝❤♦✐❝❡ ✐s t♦ ✜t t❤❡ ❢♦❧❧♦✇✐♥❣ P❲▲ ♠♦❞❡❧✿ � K ❊ ( Y ij | x ij ) = β ✵ + β ✶ x ij + b k ( x ij − c k ) + , i = ✶ , . . . , n k = ✶ ✇❤❡r❡ c ✶ , . . . , c K ❛r❡ ✐♥t❡r✐♦r ❦♥♦t ❧♦❝❛t✐♦♥s✱ b ✶ , . . . , b K ❛r❡ s♣❧✐♥❡ ❝♦❡✣❝✐❡♥ts✱ ❛♥❞ ❢♦r ❛ ♥✉♠❜❡r u ✱ u + = u ✐❢ u > ✵ ❛♥❞ ✵ ♦t❤❡r✇✐s❡✳ ◆♦t❡ t❤❛t ✐❢ ❛❧❧ b k = ✵✱ ✇❡ r❡❞✉❝❡ t♦ ❛ str❛✐❣❤t✲❧✐♥❡ r❡❣r❡ss✐♦♥ ❢✉♥❝t✐♦♥ ✽✸ ✴ ✶✻✵

  74. ❇❛②❡s✐❛♥ P❡♥❛❧✐③❡❞ ▲✐♥❡❛r ❙♣❧✐♥❡s ❋✐tt✐♥❣ t❤❡ ♠♦❞❡❧ ✐♥ ❙❆❙ ✇✐t❤ ✶✵ ❦♥♦ts ❢r♦♠ ❛❣❡s ✺✲✶✹✱ ✇❡ s❡❡ t❤❛t t❤❡ ♠♦❞❡❧ ✐s r❡❛s♦♥❛❜❧② ✢❡①✐❜❧❡ ❜✉t ♥♦t s♠♦♦t❤ ❋✐❣✉r❡ ✸✿ ❊st✐♠❛t❡❞ ♠❡❛♥ r❡❣r❡ss✐♦♥ ❢✉♥❝t✐♦♥ ❢♦r ♣✐❡❝❡✇✐s❡ ❧✐♥❡❛r ♠♦❞❡❧✳ ● 0.8 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0.7 ● Log Concentration ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0.6 ● ● ● ● ● ● ● 0.5 ● 0 2 4 6 8 10 12 14 16 Age (Y ears) ✽✹ ✴ ✶✻✵

  75. P❡♥❛❧✐③❡❞ ▲✐♥❡❛r ❙♣❧✐♥❡s ❚♦ ✐♠♣♦s❡ s♠♦♦t❤♥❡ss✱ ✇❡ ❝❛♥ ✏s❤r✐♥❦✑ t❤❡ s♣❧✐♥❡ ❝♦❡✣❝✐❡♥ts b ✶ , . . . , b K ❜② ♣❡♥❛❧✐③✐♥❣ ❧❛r❣❡ ✈❛❧✉❡s ❊ss❡♥t✐❛❧❧② ✇❡ s❤r✐♥❦ ❧❛r❣❡ s♣❧✐♥❡ ❝♦❡✣❝✐❡♥ts t♦✇❛r❞ ③❡r♦✱ s♦ t❤❛t t❤❡r❡ ❛r❡ ♥♦ ❡①tr❡♠❡ ✈❛❧✉❡s ❚❤✐s ❝❛♥ ❜❡ ✉s❡❢✉❧ ✐❢ ✇❡ ❤❛✈❡ ❛ ❧❛r❣❡ ♥✉♠❜❡r ♦❢ ❦♥♦ts✱ s✐♥❝❡ t❤✐s ❝❛♥ ✐♥tr♦❞✉❝❡ ❝♦❧❧✐♥❡❛r✐t② ❛♠♦♥❣ t❤❡ P❲▲ ❜❛s✐s ❢✉♥❝t✐♦♥s ❉♦✐♥❣ s♦ ✇♦✉❧❞ ❧❡❛❞ t♦ ❧❛r❣❡ ❙❊s ❢♦r t❤❡ s♣❧✐♥❡ ❝♦❡✣❝✐❡♥ts P❡♥❛❧✐③✐♥❣ t❤❡ ❝♦❡✣❝✐❡♥ts st❛❜✐❧✐③❡s t❤❡ ❡st✐♠❛t❡s ❛♥❞ ❛✈♦✐❞s ♦✈❡r✜tt✐♥❣✱ ✇❤✐❝❤ ❝❛♥ ❛r✐s❡ ✇❤❡♥ ✇❡ ✜t ❛♥ ♦✈❡r❧② ✏♥♦✐s②✑ ❝✉r✈❡ ✽✺ ✴ ✶✻✵

  76. P❡♥❛❧✐③❡❞ ❘❡❣r❡ss✐♦♥ ❘❛t❤❡r t❤❛♥ ♠✐♥✐♠✐③✐♥❣ t❤❡ r❡s✐❞✉❛❧ s✉♠ ♦❢ sq✉❛r❡s � � �� ✷ � n � K Q = Y i − β ✵ + β ✶ x i + b k ( x i − c k ) + , i = ✶ k = ✶ ♣❡♥❛❧✐③❡❞ r❡❣r❡ss✐♦♥ ♠✐♥✐♠✐③❡s Q s✉❜❥❡❝t t♦ ❛ ❝♦♥str❛✐♥t t❤❛t r❡str✐❝ts t❤❡ s✐③❡ ♦❢ t❤❡ { b k } ✱ t❤✉s s♠♦♦t❤✐♥❣ ♦r r❡❣✉❧❛r✐③✐♥❣ t❤❡ s♣❧✐♥❡ ❝✉r✈❡ P♦♣✉❧❛r ❝♦♥str❛✐♥ts ✐♥❝❧✉❞❡ ✸ ✶ ♠❛① | b k | < t ✷ � K k = ✶ | b k | < t ✭▲❛ss♦ ❝♦♥str❛✐♥t✮ ✸ � K k < t = ❜ T ❜ < t ✭❘✐❞❣❡ ❝♦♥str❛✐♥t✮ k = ✶ b ✷ ✹ ❜ T ❉❜ < t ❢♦r s♦♠❡ K × K ♣♦s✐t✐✈❡ s❡♠✐✲❞❡✜♥✐t❡ ♣❡♥❛❧t② ♠❛tr✐① ✱ ❉ ✭❡✳❣✳✱ ❛ s♣❛t✐❛❧ s♠♦♦t❤✐♥❣ ♠❛tr✐①✮ ✸ ❘✉♣♣❡rt ❡t ❛❧✳✱ ♣❛❣❡ ✻✺✳ ✽✻ ✴ ✶✻✵

  77. P❡♥❛❧✐③❡❞ ❘❡❣r❡ss✐♦♥ P❡♥❛❧✐③❡❞ r❡❣r❡ss✐♦♥ ♠✐♥✐♠✐③❡s t❤❡ ♣❡♥❛❧✐③❡❞ s✉♠ ♦❢ sq✉❛r❡s � � �� ✷ � n � K + λ ❜ T ❉❜ , Q ( λ ) = Y i − β ✵ + β ✶ x i + b k ( x i − c k ) + i = ✶ k = ✶ ✇❤❡r❡ • λ ❜ T ❉❜ ✐s ❦♥♦✇♥ ❛s t❤❡ r♦✉❣❤♥❡ss ♣❡♥❛❧t② ♣❡♥❛❧✐③✐♥❣ ♦✈❡r❧② ✏r♦✉❣❤✑ ♦r ♥♦✐s② ❢❡❛t✉r❡s ♦❢ t❤❡ ❝✉r✈❡✱ ❛♥❞ • λ ✐s ❛ t✉♥✐♥❣ ♣❛r❛♠❡t❡r t❤❛t ❝♦♥tr♦❧s t❤❡ ❞❡❣r❡❡ ♦❢ s♠♦♦t❤♥❡ss✱ ✇✐t❤ ✐♥❝r❡❛s✐♥❣ s♠♦♦t❤♥❡ss ❛s λ → ∞ λ ❝❛♥ ❜❡ ✈✐❡✇❡❞ ❛s ❛ ▲❛❣r❛♥❣❡ ♠✉❧t✐♣❧✐❡r ✱ ✇❤✐❝❤ ✐s ❛ t❡❝❤♥✐q✉❡ ❝♦♠♠♦♥❧② ✉s❡❞ t♦ ♠✐♥✐♠✐③❡ ❝♦♥str❛✐♥❡❞ ❢✉♥❝t✐♦♥s ◆♦t❡ ❛❧s♦ t❤❛t ✇❡ ❞♦♥✬t ♣❡♥❛❧✐③❡ t❤❡ ✐♥t❡r❝❡♣t✱ β ✵ ✱ ♦r t❤❡ ❧✐♥❡❛r ❝♦❡✣❝✐❡♥t✱ β ✶ ✽✼ ✴ ✶✻✵

  78. ❘✐❞❣❡❞ P❲▲ ❘❡❣r❡ss✐♦♥ ❈❤♦♦s✐♥❣ ❉ = ■ K ②✐❡❧❞s t❤❡ r✐❞❣❡ ♣❡♥❛❧t② � � �� ✷ � n � K + λ ❜ T ❜ , Q ( λ ) = Y i − β ✵ + β ✶ x i + b k ( x i − c k ) + i = ✶ k = ✶ � n � K � � �� ✷ + λ ① T i β + ③ T b ✷ = Y i − i ❜ k i = ✶ k = ✶ ( ❨ − ❳ β + ❩❜ ) T ( ❨ − ❳ β + ❩❜ ) + λ ❜ T ❜ = ✇❤❡r❡ ❳ ✐s ❛♥ n × ✷ ♠❛tr✐① [ ✶ , ① ] ✱ β = ( β ✵ , β ✶ ) T ✱ ❩ ✐s ❛♥ n × K s♣❧✐♥❡ ❜❛s✐s ❞❡s✐❣♥ ♠❛tr✐① ✇✐t❤ ( i , j ) ✲t❤ ❡❧❡♠❡♥t ❡q✉❛❧ t♦ ( x i − c j ) + ✱ ❛♥❞ ❜ = ( b ✶ , . . . , b K ) T ✳ ◆♦t❡✱ t❤❡ ( i , j ) ✲t❤ ❡❧❡♠❡♥t ♦❢ ❩ ij = ✵ ✐❢ x i ≤ c j ❛♥❞ ❡q✉❛❧ t♦ x i − c j ✐❢ x i > c j ❢♦r i = ✶ , . . . , n ❛♥❞ j = ✶ , . . . , K ✳ ✽✽ ✴ ✶✻✵

  79. ▼✐①❡❞ ▼♦❞❡❧ ❙tr✉❝t✉r❡ Q ( λ ) ❤❛s t❤❡ ❢♦r♠ ♦❢ ❛ ♠✐①❡❞ ♠♦❞❡❧ ✇✐t❤ ✜①❡❞ ❡✛❡❝ts β ❛♥❞ r❛♥❞♦♠ ❡✛❡❝ts ❜ ❲❡ ✇✐❧❧ ❞✐s❝✉ss ♠✐①❡❞ ♠♦❞❡❧s s❤♦rt❧②✱ ❜✉t ❢♦r ♥♦✇ ♥♦t❡ t❤❛t t❤❡ r❛♥❞♦♠ ❡✛❡❝ts ❛r❡ ♥♦t s✉❜❥❡❝t✲s♣❡❝✐✜❝ ✭✐✳❡✳✱ ♥♦t ❜ i ✮ ■♥st❡❛❞✱ t❤❡② ❛r❡ s❤❛r❡❞ ❜② ❛❧❧ n s✉❜❥❡❝ts ◆❡✈❡rt❤❡❧❡ss✱ ✇❡ ❝❛♥ ✉s❡ ❛ ♠✐①❡❞ ♠♦❞❡❧ ❢r❛♠❡✇♦r❦ ✭❢r❡q✉❡♥t✐st ♦r ❇❛②❡s✐❛♥✮ t♦ ❡st✐♠❛t❡ β ✱ λ ✱ ❜ ❛♥❞ σ ✷ ✽✾ ✴ ✶✻✵

  80. ▼✐①❡❞ ▼♦❞❡❧ ❙tr✉❝t✉r❡ ■♥ ♣❛rt✐❝✉❧❛r✱ ✇❡ ❝❛♥ ✇r✐t❡ ♦✉r ♠♦❞❡❧ ❛s n × ✶ = ❳ ❨ p × ✶ + ❩ n × K ❜ K × ✶ + ❡ n × ✶ , n × p β ✇❤❡r❡ β = ( β ✵ , β ✶ ) T ✐s ❛ p × ✶ ( p = ✷ ) ✈❡❝t♦r ❢♦r ✜①❡❞ ❡✛❡❝ts✱ ❜ ∼ ◆ ( ✵ , σ ✷ b ■ K ) ✐s ❛ ✈❡❝t♦r ♦❢ r❛♥❞♦♠ ❡✛❡❝ts✱ ❡ ∼ ◆ ( ✵ , σ ✷ e ■ n ) ✱ ❛♥❞ σ ✷ b = σ ✷ e /λ ✳ ◆ ( ✵ , σ ✷ b ■ K ) ✐s ❛ ♣r✐♦r ❞✐str✐❜✉t✐♦♥ ❢♦r ❜ t❤❛t ✐♠♣♦s❡s ♣r✐♦r s❤r✐♥❦❛❣❡ t♦✇❛r❞ ③❡r♦✳ ❋♦r ✜①❡❞ σ ✷ e ✱ ❛s λ → ✵✱ σ ✷ b → ∞ ✳ ❚❤✉s✱ t❤❡r❡ ✐s ❤✐❣❤ ✈❛r✐❛❜✐❧✐t② ✐♥ t❤❡ ♣r✐♦r✱ ❛♥❞ ❧✐tt❧❡ s❤r✐♥❦❛❣❡✴s♠♦♦t❤✐♥❣ ❆s λ → ∞ ✱ σ ✷ b → ✵✳ ❍❡r❡✱ t❤❡r❡ ✐s ❧♦✇ ✈❛r✐❛❜✐❧✐t②✱ ❛♥❞ ❜ ✐s ♠♦r❡ t✐❣❤t❧② ❝❡♥t❡r❡❞ ❛❜♦✉t ③❡r♦ ✭✐♥❝r❡❛s❡❞ s❤r✐♥❦❛❣❡✮ ✾✵ ✴ ✶✻✵

  81. ❋r❡q✉❡♥t✐st ■♥❢❡r❡♥❝❡ ❢♦r β ❲❡ ❝❛♥ s❤♦✇ ✹ t❤❛t ✐❢ σ ✷ e ❛♥❞ σ ✷ b ❛r❡ ❦♥♦✇♥✱ t❤❡♥ t❤❡ ❇▲❯❊ ♦❢ β ✐s � � − ✶ ❳ Σ − ✶ ❨ , � ❳ T Σ − ✶ ❳ p × ✶ = β b ❩❩ T ✐s t❤❡ ♠❛r❣✐♥❛❧ ✈❛r✐❛♥❝❡ ♦❢ ❨ ❛❢t❡r n × n = σ ✷ e ■ n + σ ✷ ✇❤❡r❡ Σ ✐♥t❡❣r❛t✐♥❣ ♦✉t ❜ ✳ ❚❤✐s ✐s ♦❜t❛✐♥❡❞ ❜② ♠❛①✐♠✐③✐♥❣ t❤❡ ♠❛r❣✐♥❛❧ ❧✐❦❡❧✐❤♦♦❞ ♦❢ ❨ ❛❢t❡r ✐♥t❡❣r❛t✐♥❣ ♦✉t t❤❡ r❛♥❞♦♠ ❡✛❡❝ts ❜ ✳ ❈❧❡❛r❧②✱ � β ✐s t❤❡ ✇❡✐❣❤t❡❞ ❧❡❛st sq✉❛r❡s ❡st✐♠❛t❡ ♦❢ � β ✇❤❡r❡ ❈♦✈ ( ❨ | ❳ ) = Σ ✳ ✹ ❙❡❡ ❲❛❦❡✜❡❧❞✱ ♣✳ ✺✻✺✕✺✻✻✳ ✾✶ ✴ ✶✻✵

  82. ❋r❡q✉❡♥t✐st ■♥❢❡r❡♥❝❡ ❢♦r ❜ ▲✐❦❡✇✐s❡✱ ✐❢ t❤❡ ✈❛r✐❛♥❝❡ ❝♦♠♣♦♥❡♥ts ❛r❡ ❦♥♦✇♥✱ t❤❡ ❜❡st ❧✐♥❡❛r ✉♥❜✐❛s❡❞ ♣r❡❞✐❝t♦r ✭❇▲❯P✮ ♦❢ ❜ ✐s � � − ✶ ❩ T ❘ − ✶ ( ❨ − ❳ � ● − ✶ + ❩ T ❘ − ✶ ❩ ˜ ❜ = β ) K × ✶ b ❩ T Σ − ✶ ( ❨ − ❳ � σ ✷ = β ) , ✇❤❡r❡ ● = σ ✷ b ■ k ✱ ❘ = σ ✷ e ■ n ✱ ❛♥❞ t❤❡ ❧❛st ❧✐♥❡ ❢♦❧❧♦✇s ❢r♦♠ t❤❡ ❢❛❝t t❤❛t✱ ❢♦r ✐♥✈❡rt✐❜❧❡ ♠❛tr✐❝❡s ❆ ❛♥❞ ❈ ✱ � � − ✶ ( ❆ + ❇❈❉ ) − ✶ ❇❈ ❈ − ✶ + ❉❆ − ✶ ❇ ❆ − ✶ ❇ = ✾✷ ✴ ✶✻✵

  83. ❯♥❦♥♦✇♥ ❱❛r✐❛♥❝❡ ❈♦♠♣♦♥❡♥ts ❙✐♥❝❡ σ ✷ e ❛♥❞ σ ✷ b ❛r❡ ✉♥❦♥♦✇♥✱ ✐♥ ♣r❛❝t✐❝❡ ✇❡ ♣❧✉❣ ✐♥ t❤❡ ❘❊▼▲ b ❛♥❞ � ❡st✐♠❛t❡s ♦❢ σ ✷ e ✱ σ ✷ β t♦ ❞❡r✐✈❡ ❧❛r❣❡✲s❛♠♣❧❡ ❡st✐♠❛t♦rs ❛♥❞ ♣r❡❞✐❝t♦rs � � − ✶ ❳ T � − ✶ ❳ − ✶ ❨ � ❳ � = ❛♥❞ β Σ Σ − ✶ ( ❨ − ❳ � b ❩ T � � σ ✷ ❜ = � Σ β ) ❋✐♥❛❧❧②✱ t❤❡ ❘❊▼▲ ❡st✐♠❛t❡ ♦❢ t❤❡ s♠♦♦t❤✐♥❣ ♣❛r❛♠❡t❡r ✐s ˆ σ ✷ σ ✷ λ = � e / � b ✳ ✾✸ ✴ ✶✻✵

  84. ❇❛②❡s✐❛♥ ■♥❢❡r❡♥❝❡ ■♥ t❤❡ ❇❛②❡s✐❛♥ s❡tt✐♥❣✱ ✇❡ ✉s❡ t❤❡ s❛♠❡ ♠✐①❡❞ ♠♦❞❡❧ ❢r❛♠❡✇♦r❦ ✇✐t❤ ❛ ◆ K ( ✵ , σ ✷ b ■ K ) ♣r✐♦r ❢♦r ❜ ❇✉t ♥♦✇ ✇❡ ♣❧❛❝❡ ❛❞❞✐t✐♦♥❛❧ ❝♦♥❥✉❣❛t❡ ♣r✐♦rs ♦♥ β ✱ σ ✷ e ❛♥❞ σ ✷ b ❖r✱ ❡q✉✐✈❛❧❡♥t❧②✱ ✇❡ ♣❧❛❝❡ ♣r✐♦rs ♦♥ τ e = ✶ /σ ✷ e ❛♥❞ τ b = ✶ /σ ✷ b ❆ ❝♦♠♠♦♥ ❝❤♦✐❝❡ ✐s✿ ✶ β ∼ ◆ ✷ ( β ✵ , ❚ − ✶ ✵ ) ✷ π ( σ ✷ e ) ∝ ✶ /σ ✷ e ✭✐♠♣r♦♣❡r ♣r✐♦r✮ ✸ τ b ∼ ●❛ ( c , d ) ❚❤❡ ❝❤♦✐❝❡ ♦❢ c ❛♥❞ d ❛✛❡❝ts s♠♦♦t❤♥❡ss✳ ❚♦ s❡❧❡❝t ✈❛❧✉❡s✱ ❝❛♥ ✉s❡ ❇❛②❡s✐❛♥ ✐♥❢♦r♠❛t✐♦♥ ❝r✐t❡r✐❛✱ ♦r ♣❧❛❝❡ ❛ ❞✐s❝r❡t❡ ❜✐✈❛r✐❛t❡ ♣r✐♦r ♦♥ ( c , d ) ✾✹ ✴ ✶✻✵

  85. ❇❛②❡s✐❛♥ ■♥❢❡r❡♥❝❡ ∗ ❚❤✐s ❧❡❛❞s t♦ t❤❡ ❢♦❧❧♦✇✐♥❣ ❢✉❧❧ ❝♦♥❞✐t✐♦♥❛❧s✿ ✶ β | ② , r❡st ∼ ◆ ✷ ( ♠ , ❱ ) ✱ ✇❤❡r❡ � � − ✶ ✱ ✇❤❡r❡ τ e = ✶ /σ ✷ ❚ ✵ β ✵ + τ e ❳ T ❳ ✷ × ✷ = ❱ e � � ❚ ✵ β ✵ + τ e ❳ T ( ② − ❩❜ ) ✷ × ✶ = ❱ ♠ ✷ ❜ | ② , r❡st ∼ ◆ K ( ♠ , ❱ ) ✱ ✇❤❡r❡ � � − ✶ τ b ■ K + τ e ❩ T ❩ K × K = ❱ K × ✶ = τ e ❱ ❩ T ( ② − ❳ β ) ♠ � n � ✷ , ( ② − ❳ β − ❩❜ ) T ( ② − ❳ β − ❩❜ ) ✸ τ e | ② , r❡st ∼ ●❛ ✷ � � c + K ✷ , d + ❜ T ❜ / ✷ ✹ τ b | ② , r❡st ∼ ●❛ ❙❡❡ ♣❡♣t✐❞❡✳r ❢♦r ❞❡t❛✐❧s ✾✺ ✴ ✶✻✵

  86. ❘ ❈♦❞❡ ❢♦r P❡♥❛❧✐③❡❞ P❲▲ ▼♦❞❡❧ Gibbs Sampler for Penalized PWL Spline Model # Import Data: x=age, y=logc # PWL splines k<-10 # number of knots grid<- seq (5,14,length=k) # k+1 initial knot locations (includes boundaries) Z<- matrix (0,n,k) for (j in 1:k) Z[,j]<- pmax (age-grid[j],0) # Priors c<-d<-1e-5 # Hyperpriors for taub -- increase to 1 to reduce smoothness # Prior var of taub small and var sigma_b is large = less shrinkage T0<- diag (.0001,p) # Prior Precision # Inits -- see R code # Fine grid of x values with which to plot yhat x2<- seq (0,16,by=.01) # Grid of age values X2<- cbind (1,x2) # Fixed effect covs Z2<- matrix (0, length (x2),k) for (j in 1:k) Z2[,j]<- pmax (x2-grid[j],0) ######################### # Gibbs of Ridged Model # ######################### for (i in 1:nsim){ # Update beta v<- solve (T0+taue* crossprod (X)) m<-v%*%(T0%*%beta0+taue* t (X)%*%(y-Z%*%b)) Beta[i,]<-beta<- c ( rmvnorm (1,m,v)) # Update b v<- solve (taub* diag (k)+taue* crossprod (Z)) m<-taue*v%*% t (Z)%*%(y-X%*%beta) B[i,]<-b<- c ( rmvnorm (1,m,v)) # Update taue (diffuse) g<- crossprod (y-X%*%beta-Z%*%b) taue<- rgamma (1,n/2,g/2) Sigmae[i]<-1/taue # Update taub (proper) taub<- rgamma (1,c+k/2,d+ crossprod (b)/2) Sigmab[i]<-1/taub # Yhat Yhat[i,]<-X2%*%beta+Z2%*%b # Predicted values } ✾✻ ✴ ✶✻✵

  87. ❘❊▼▲ ❊st✐♠❛t❡ ♦❢ ▼❡❛♥ ❘❡❣r❡ss✐♦♥ ❋✉♥❝t✐♦♥ ❋✐❣✉r❡ ✹✿ ❘❊▼▲ ❡st✐♠❛t❡s ♦❢ t❤❡ ♦r✐❣✐♥❛❧ ❛♥❞ r✐❞❣❡✲s♠♦♦t❤❡❞ P❲▲ r❡❣r❡ss✐♦♥ ❢✉♥❝t✐♦♥s✳ 0.8 Log Concentration 0.7 0.6 0.5 0 5 10 15 Age (Years) Log Concentration Orginal PWL Ridged PWL Lower CI Ridged PWL Upper CI Ridged PWL ✾✼ ✴ ✶✻✵

  88. P♦st❡r✐♦r ▼❡❛♥ ❊st✐♠❛t❡ ♦❢ t❤❡ ❘❡❣r❡ss✐♦♥ ❋✉♥❝t✐♦♥ ❋✐❣✉r❡ ✺✿ P♦st❡r✐♦r ♠❡❛♥ ❡st✐♠❛t❡s ♦❢ t❤❡ ♦r✐❣✐♥❛❧ ❛♥❞ r✐❞❣❡✲s♠♦♦t❤❡❞ P❲▲ r❡❣r❡ss✐♦♥ ❢✉♥❝t✐♦♥s✳ Original PWL ● 0.80 Ridged 95% CrI ● 0.75 ● ● ● ● ● ● ● ● 0.70 ● ● ● ●● ● ● Log Concentration ● ● ● ● ● ● ● ● ● ● ● ● 0.65 ● ● ● ● ● 0.60 ● ● ● ● ● 0.55 ● ● 0.50 ● 0 5 10 15 Age (Y ears) ✾✽ ✴ ✶✻✵

  89. P♦st❡r✐♦r ▼❡❛♥ ❊st✐♠❛t❡s ✇✐t❤ ❤②♣❡r♣❛r❛♠❡t❡rs c = d = ✶ Original PWL 0.80 Ridged 95% CrI 0.75 0.70 Log Concentration 0.65 0.60 0.55 0.50 0 5 10 15 Age (Y ears) ✾✾ ✴ ✶✻✵

  90. ▲✐♥❡❛r ▼✐①❡❞ ▼♦❞❡❧s ❈♦♥s✐❞❡r ❛ ❧✐♥❡❛r ♠✐①❡❞ ♠♦❞❡❧ ♦❢ t❤❡ ❢♦r♠ n i × ✶ = ❳ i ❨ i n i × p β p × ✶ + ❩ i n i × q ❜ i q × ✶ + ❡ i n i × ✶ , i = ✶ , . . . , n ✇❤❡r❡✱ ✉♥❞❡r ❝❧❛ss✐❝❛❧ ❛ss✉♠♣t✐♦♥s✱ • ❜ i ∼ ◆ q ( ✵ , ● ) ✐s ❛ ✈❡❝t♦r ♦❢ s✉❜❥❡❝t✲s♣❡❝✐✜❝ r❛♥❞♦♠ ❡✛❡❝ts ✭❝♦✉❧❞ ❛❧❧♦✇ ❢♦r ♥♦♥✲♥♦r♠❛❧✐t②✮ • ❩ i ✐s ❛ r❛♥❞♦♠ ❡✛❡❝t ❞❡s✐❣♥ ♠❛tr✐① • ❡ i ∼ ◆ n i ( ✵ , ❘ i ) ∼ ◆ n i ( ✵ , σ ✷ e ■ n i ) • ❜ i ❛♥❞ ❡ i ❛r❡ ✐♥❞❡♣❡♥❞❡♥t ❘❱s ◆♦t❡ t❤❛t ✇❡ ❛❧❧♦✇ ❢♦r ✉♥❜❛❧❛♥❝❡❞ ❞❛t❛ ✇✐t❤ t❤❡ ♥✉♠❜❡r ♦❢ r❡♣❡❛t❡❞ ♠❡❛s✉r❡♠❡♥ts✱ n i ✱ ✈❛r②✐♥❣ ❛❝r♦ss s✉❜❥❡❝ts ✶✵✵ ✴ ✶✻✵

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend