modeling and predicting the structure of transmembrane
play

. Modeling and predicting the structure of transmembrane proteins - PowerPoint PPT Presentation

. Modeling and predicting the structure of transmembrane proteins uhl 123 , Jean-Marc Steyaert 2 J er ome Waldisp Jerome.Waldispuhl@polytechnique.edu 1 Department of Biology, Boston College, USA 2 LIX, Ecole polytechnique, France 3


  1. ✕ ☎ ✟ ✏ ✂ ✌ ☞ ☛ ✁ ✆ ✠ ✝ ✞ ☞ ☛ ✁ ✟ ☞ ✜ ✡ ✞ ☛✧ ✓ ✡ ✞ ✝ ✆ ☎ ☛✧ ☎ ✓ ✆ ✝ ✞ � ✁ ✆ ☎ ✢ ✠ ✝ ✟ ✝ ✔ ✂ ✓ ✑ ✏ ☎ ✆ ✞ ✓ ✍ ✂ ✓ ✟ ✘ ✠ ✆ ✔ ✂ ☎✆ ✓ ✏ ✂ ✌ ✠ ✛ ✟ ✙ ✔ ✙ ✞ ✝ ✆ ☛ ✕ ✙ ✑ ✚ ✢ ✣ ✪ ✟ ✍ ✁ � ✞ ✝ ✠ ✡ ☛ ★ ✁ ✡ ✞ ✝ ✆ ☎ ✆ ✟ ✠ ✁ ✞ � ✠ ✩ ✟ ✆ ✏ ✡ ✝ ✡ ✆ ☎ ✢ ☛ ✓ ☛ ✙ ✏ ☛ ✡ ✠ ✤ ✏ ✡ ✠ ✤ ✟ ✏ ☎ ✞ ☛ ✝ ✆ ☎ ☎✥ ✚ ✏ ☎ ✤ ✙ ✓ ✚ ✠ ✚ ☛ ☛✧ ✚ ✍ ✁ � ✦ ✚ ✟ ✙ ✏ ✡ ✞ ✝ ✚ ☛ ✟ ✔ ✠ ✁ ✖ ✞ ✝ ☎✆ ✆ ☛ ☛ ✝ ✁ ✂ ✆ ✝ ✌ ✝✍ ✄ ✕ ✟ ✆ ✆ ✟ ✓ ✕ ✔ ✞ ✝ ☎ ✗ ✆ ✑ ✫ ✓ ✕ ✔ ✠ ☎ ✝ ✠ ✝ ✌ ✟ ✝ ✁ ✎ ✞ ✆ ✖ ☎ ✄ ✍ ✝ ✁ ✏✑ ✎ ✠ ✒ ✞ ✒ ✌ ✝✍ ✟ ✌ ✠ ✠ ✟ ✝✓ ✓ ✝ ✒ ✞ ✝ ✆ ☎ ✔ ✝ ✁ ✫ ✝ ☎✆ ☎ ✂ ✁ ✆ ✑ ☎ ✕ ✚ ✬ ✭ ✠ ✟ ✭ ✏ ✂ � ✞ ✝ ☎✆ ✄ ✂ ✁ � ✫ ✞ ✝ ✞ ✟ ✝ ☎ ✠ ✖ ✟ ✑ ✓ ✚ ✏ ✖ ✞ ✝ ✆ ✂ ✆ ✠ ✟ ✭ ✠ ✁ � ✚✬ ✖ ✑ ✓ Definition of a protein The 20 amino acids : H H H H H H H H H H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NH + NH + NH + NH + NH + NH + NH + NH + NH + NH + C α COO − C α COO − C α COO − C α COO − C α COO − C α COO − C α COO − C α COO − C α COO − C α COO − 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H CH 3 CH CH 2 H C CH 3 CH 2 H C OH CH 2 CH 2 CH 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CH 3 . . . . . . . . . . CH 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CH CH 2 OH CH 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . C CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CH 3 . . . . . . . . . . . . CH 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NH CH 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H . . . . . . . . . . H H H H H H H H H . . . . . . . . . . . . . . . . . . NH + C α COO − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NH + NH + NH + NH + NH + NH + NH + NH + NH + . . . . . . . . C α COO − C α COO − C α COO − C α COO − C α COO − C α COO − C α COO − C α COO − C α COO − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 3 3 3 3 3 3 3 CH 2 CH 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CH 2 . . . . CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NH 2 . . . . . . . . . . . . . . . . O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CH 2 CH 2 CH 2 CH 2 CH 2 COO − SH C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NH 2 . . . . . . . . . . . . . . . . O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CH . . . . . . NH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CH 2 CH 2 COO − S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CH 2 C NH 2 CH 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NH + NH 2 3 Notions of biology – p. 14/62

  2. Definition of a protein The peptid bond : H H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NH + NH + C α COO − C α COO − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R 1 R 2 Notions of biology – p. 14/62

  3. Definition of a protein The peptid bond : H H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NH + · · · + H 2 O C α CONH C α COO − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R 1 R 2 Notions of biology – p. 14/62

  4. Structure of proteins Kynase C Notions of biology – p. 15/62

  5. α -helix α -helix 3 . 6 amino acids per turn, hydrogen bond between residus n and n + 4 . Notions of biology – p. 16/62

  6. β -sheet β -sheet composed of β -strands 2 amino acids per turn, hydrogen bond between residues of paired β -strands. Notions of biology – p. 17/62

  7. Transmembrane channels Bacteriorhodopsin Porin Notions of biology – p. 18/62

  8. Transmembrane channels Bacteriorhodopsin Porin Notions of biology – p. 18/62

  9. Transmembrane channel Why ? Notions of biology – p. 19/62

  10. Transmembrane channel Why ? Simple topologies (only parallel or anti-parallel pairings) , strong contraints from the environment, Some parameters are (much) more important than the others (hydrophobicity) Notions of biology – p. 19/62

  11. Transmembrane channel Why ? Simple topologies (only parallel or anti-parallel pairings) , strong contraints from the environment, Some parameters are (much) more important than the others (hydrophobicity) Interest ? Notions of biology – p. 19/62

  12. Transmembrane channel Why ? Simple topologies (only parallel or anti-parallel pairings) , strong contraints from the environment, Some parameters are (much) more important than the others (hydrophobicity) Interest ? nearly 40 % of the proteome, functional importance (allows communication between inner and outer milieu of cell) , difficult to be observe experimentaly. Notions of biology – p. 19/62

  13. Approximate physical model for transmembrane channels Approximate physical model for α -transmembrane channels Modeling the overall structure of α -channel, modeling anti-parallel pairing of α -helices, modeling the local structure of α -helices, pseudo folding energy of α -channels. Approximate physical model – p. 20/62

  14. Modeling the overall structure of α -channel Approximate physical model – p. 21/62

  15. Modeling the overall structure of α -channel Approximate physical model – p. 21/62

  16. Modeling the overall structure of α -channel Approximate physical model – p. 21/62

  17. Modeling the overall structure of α -channel Approximate physical model – p. 21/62

  18. Modeling the overall structure of α -channel Approximate physical model – p. 22/62

  19. Modeling the overall structure of α -channel Approximate physical model – p. 22/62

  20. Modeling the overall structure of α -channel Description of α -channels with only simple anti-parallel pairings. Approximate physical model – p. 22/62

  21. Modeling the overall structure of α -channel An α -channel is a concatenation of simple anti-parallel pairings. Approximate physical model – p. 22/62

  22. Modeling anti-parallel pairing of α -helices Let’s go back to a linear description : Approximate physical model – p. 23/62

  23. Modeling anti-parallel pairing of α -helices Let’s go back to a linear description : Approximate physical model – p. 23/62

  24. modeling anti-parallel pairing of α -helices Approximate physical model – p. 24/62

  25. modeling anti-parallel pairing of α -helices Approximate physical model – p. 24/62

  26. modeling anti-parallel pairing of α -helices I O I O I O I O O I O I O I O I Approximate physical model – p. 24/62

  27. ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ✁ O I Modeling the local structure of α -helices turn, consecutive amino acids of a helix A helical face is a subsequence of turn around the helix axis, dues corresponding to a complete A helix turn is a sequence of resi- A helix is a stacking of helix turns, face O is opposed to pairing. face I is involved in pairing, Approximate physical model – p. 25/62

  28. ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ✁ O I Modeling the local structure of α -helices I I O O I I O O I Approximate physical model – p. 25/62 O O I

  29. ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ✁ O I Modeling the local structure of α -helices On average, 3 . 6 residus per turn. acids, A helical face has 1 or 2 amino consecutive amino acids, A helix turn is composed by 3 or 4 residues belonging to a I or O face, A helix is an alternate sequence of Approximate physical model – p. 25/62

  30. Pseudo folding energy 2 1 2 MEMBRANE MEMBRANE EXTERIEUR 3 Approximate physical model – p. 26/62

  31. Pseudo folding energy 2 1 2 1. E contact residu interaction MEMBRANE MEMBRANE energy, EXTERIEUR 3 n λ j · λ j ′ � f ( I k i , I k +1 ) , où f ( I k i , I k +1 � � E contact = ) = · i i � i · # I k +1 # I k i =0 ω j ∈ I k ω j ′ ∈ I k +1 i i i Approximate physical model – p. 26/62

  32. Pseudo folding energy 2 1 2 1. E contact residu interaction MEMBRANE MEMBRANE energy, 2. E memb membrane interaction energy, EXTERIEUR 3 � E memb = K memb · λ i ω i ∈ O k i Approximate physical model – p. 26/62

  33. Pseudo folding energy 2 1 2 1. E contact residu interaction MEMBRANE MEMBRANE energy, 2. E memb membrane interaction energy, 3. E turn turn energy. EXTERIEUR 3 n � E turn = T ( n − m ) + K cyt/per · λ i i = m Approximate physical model – p. 26/62

  34. Modeling the overall structure of α -channel Approximate physical model – p. 27/62

  35. Modeling the overall structure of α -channel Approximate physical model – p. 28/62

  36. Modeling the overall structure of α -channel Approximate physical model – p. 28/62

  37. Modeling the overall structure of α -channel A β -channel is a concatenation of anti-parallel pairings of β -strands. Approximate physical model – p. 28/62

  38. Grammatical modeling Grammatical modeling of Transmembrane channels Local structure of the secondary structures : rational grammar Secondary structure pairing : context-free grammar Overall structure of a TM channel : multi-tape context-free grammar pseudo folding energy : attributes Grammatical modeling – p. 29/62

  39. MTCFG des canaux α Grammatical modeling of TM α -channels Regular grammar for α -helix, Context-free grammar for α -helix pairings, Multi-tape context-free grammar for α -channel, Muti-tape S-attribute grammar for α -channel, Grammatical modeling – p. 30/62

  40. Regular grammar for α -helix A helix is an alternate se- quence of residues belon-  S helice → I 0 | I 1 | O 0 | O 1 ging to a I or O face,     A helix turn is composed by I 0 → • I 1 | • O 0     3 or 4 consecutive amino  P helice = I 1 → • O 0 | • O 1 acids,   O 0 → • O 1  A helical face has 1 or 2     amino acids, O 1 → • I 0   On average, 3 . 6 residus per turn. Grammatical modeling – p. 31/62

  41. Regular grammar for α -helix A helix is an alternate se- quence of residues belon- ging to a I or O face, A helix turn is composed by 3 or 4 consecutive amino I 0 I 1 O 0 O 1 acids, A helical face has 1 or 2 amino acids, On average, 3 . 6 residus per turn. Grammatical modeling – p. 31/62

  42. CFG for α -helix anti-parallel pairings I O I O I O I O O I O I O I O I Grammatical modeling – p. 32/62

  43. CFG for α -helix anti-parallel pairings I O I O I O I O O I O I O I O I  S α F α O | F α →  ap I    F α I F α O I | C α cyt | C α  →  per I    F α O F α I O | C α cyt | C α P ap = → per O  C α i C α  → cyt | i  cyt     C α o C α → per | o   per Grammatical modeling – p. 32/62

  44. CFG for α -helix anti-parallel pairings  S α F α O | F α →  ap I    F α I F α O I | C α cyt | C α  →  per I    F α O F α I O | C α cyt | C α P ap = → per O  C α i C α  → cyt | i  cyt     C α o C α → per | o   per Grammatical modeling – p. 32/62

  45. CFG for α -helix anti-parallel pairings  S α F α O | F α →   ap I S helice → I 0 | I 1 | O 0 | O 1      F α I F α O I | C α cyt | C α   →   I 0 → • I 1 | • O 0 per I       F α O F α I O | C α cyt | C α P ap = → P helice = I 1 → • O 0 | • O 1 per O   C α i C α   O 0 → • O 1 → cyt | i   cyt       O 1 → • I 0   C α o C α → per | o   per Grammatical modeling – p. 32/62

  46. CFG for α -helix anti-parallel pairings  F 1 , 1 | F 1 , 1 S ap → 1  I O     F 1 , 1 • • F 1 , 1 • • | • F 2 , 1 • • | • • F 1 , 2 • | • F 1 , 1  • | C α → 2   cyt I O O O O     F 2 , 1 • • F 1 , 1 • • | • • F 1 , 2 • | C α  → 3   cyt I O O     F 1 , 2 • • F 1 , 1 • • | • F 2 , 1  • • | C α → 4   cyt I O O     F 2 , 2 • • F 2 , 2  • • | C α → 5   cyt I O P α ap = F 1 , 1 • • F 1 , 1 • • | • F 2 , 1 • • | • • F 1 , 2 • | • F 2 , 2 • | C α → 6   cyt O I I I I     F 2 , 1 • • F 1 , 1 • • | • • F 1 , 2 • | C α  → 7   cyt O I I     F 1 , 2 • • F 1 , 1 • • | • F 2 , 1 • • | C α  → 8   cyt O I I     F 2 , 2 • • F 1 , 1 • • | C α  → 9   cyt O I     C α • C α  → cyt | • 10  cyt Grammatical modeling – p. 33/62

  47. MTCFG for α -channels A TM-channel is represented by a 2-tape word : ))))))iii))))))oo))))))ii))))))ooo)))))) ((((((iii((((((oo((((((ii((((((ooo(((((( Grammatical modeling – p. 34/62

  48. MTCFG for α -channels A TM-channel is represented by a 2-tape word : ))))))------iii))))))------oo))))))------ii))))))------ ------((((((iii------((((((oo------((((((ii------(((((( Grammatical modeling – p. 34/62

  49. MTCFG for α -channels  � t ) � �  � − | T α seq,cyt | T α  S α → S α 1  seq,per − t (        T α T α cyt T α seq,per | T α → 2   seq,cyt cyt        T α T α per T α seq,cyt | T α → 3  seq,per per      � t ) � � P canal = − � T α T α | C α → 4 cyt cyt cyt t ( −     � t ) � �  − �  T α T α | C α → 5  per per per  t ( −      � i cyt | � i  � � C α C α  → 6  cyt i i      � o per | � o   � � C α C α → 7   per o o Grammatical modeling – p. 35/62

  50. MTCFG for α -channels S α S α S α S α S α S α T α seq,cyt T α seq,per T α T α per seq,cyt T α T α T α cyt per cyt T α T α T α cyt per cyt T α T α T α cyt per cyt T α T α T α cyt per cyt T α C α T α cyt per cyt C α C α C α cyt per cyt C α C α C α cyt per cyt � i � i � � t ) �� t ) �� t ) �� t ) �� t ) � o � o � o � � t ) �� t ) �� t ) �� t ) �� t ) � i � i � � t ) �� t ) �� t ) �� t ) �� t ) �� t ) �� t ) �� t ) �� t ) �� t ) � − � − � − � − � − � − � − � − � − � − � − � − � − � − � − � − � − � − � − � − � � � � � � � � � � � � � � � � � � � � � � � � � � � t ( t ( t ( t ( t ( t ( t ( t ( t ( t ( i i − − − − − t ( t ( t ( t ( t ( o o o − − − − − t ( t ( t ( t ( t ( i i − − − − − − − − − − Grammatical modeling – p. 36/62

  51. MTCFG for α -channels How to integrate the pairing rules ? ))))iii))))oo))))ii))))oo)))) ((((iii((((oo((((ii((((oo(((( Grammatical modeling – p. 37/62

  52. MTCFG for α -channels How to integrate the pairing rules ? MPPMMPMMPPMMiiiPPMPPMMPMMPPooMMPPMMPMMPMMiiPPMPPMMPMMPPooMMPMMPMMPPMM PMMPPMMPPMMPiiiMPPMMPMMPPMMooPMMPPMPPMMPPiiMPPMMPPMMPPMooMPPMMPPMPPMM Grammatical modeling – p. 37/62

  53. MTCFG for α -channels  F 1 , 1 | F 1 , 1 S ap → 1  I O     F 1 , 1 • • F 1 , 1 • • | • F 2 , 1 • • | • • F 1 , 2 • | • F 1 , 1  • | C α → 2   I O O O O     F 2 , 1 • • F 1 , 1 • • | • • F 1 , 2 • | C α  → 3   I O O     F 1 , 2 • • F 1 , 1 • • | • F 2 , 1  • • | C α → 4   I O O     F 2 , 2 • • F 2 , 2  • • | C α → 5   I O P α ap = F 1 , 1 • • F 1 , 1 • • | • F 2 , 1 • • | • • F 1 , 2 • | • F 2 , 2 • | C α → 6   O I I I I     F 2 , 1 • • F 1 , 1 • • | • • F 1 , 2 • | C α  → 7   O I I     F 1 , 2 • • F 1 , 1 • • | • F 2 , 1 • • | C α  → 8   O I I     F 2 , 2 • • F 1 , 1 • • | C α  → 9   O I    • C α | •  C α  → 10  Grammatical modeling – p. 38/62

  54. MTCFG for α -channels  � � � � ε • S α → S α | Canal 1  ε •     F 1 , 1 Canal | F 1 , 1 Canal | F 1 , 1 | F 1 , 1 → 2 Canal   I O I O    � �� � � �� � | � � � �� � | � �� � � � | � � � � F 1 , 1 F 1 , 1 F 2 , 1 F 1 , 2 F 2 , 2 ε ε ε ε ε ε | C α • • • • • •  → 3  I O ε ε O ε ε O ε O ε • • • • • •    � �� � � �� � | � �� � � �  F 2 , 1 ε ε F 1 , 1 ε ε F 1 , 2 | C α • • • → 4  ε ε ε  I O O • • • •    � �� � � �� � | � � � �� � F 1 , 2 F 1 , 1 F 2 , 1 ε ε ε | C α  • • • • → 5  ε ε ε ε I O O • • •   P α = � �� � � �� � F 2 , 2 F 1 , 1 ε ε | C α • • → 6 ε ε I O • •   � �� � � �� � | � � � �� � | � �� � � � | � � � � F 1 , 1 ε ε F 1 , 1 ε F 2 , 1 ε ε F 1 , 2 ε F 2 , 2 | C α • • • • • •  → 7  O I ε ε I ε ε I ε I ε • • • • • •    � �� � � �� � | � �� � � �  F 2 , 1 F 1 , 1 F 1 , 2 ε ε ε ε | C α • • • → 8  ε ε ε  O I I • • • •    � �� � � �� � | � � � �� � F 1 , 2 F 1 , 1 F 2 , 1 ε ε ε | C α  • • • • → 9  ε ε ε ε O I I • • •    � �� � � �� �  F 2 , 2 F 1 , 1 ε ε | C α • • → 10   O I ε ε • •    � � C α | � � C α  • • → 11 • =1 • =1 Grammatical modeling – p. 38/62

  55. MTSAG for α -channels Multi-tape S-attribute grammar for α -channels To each production rule, associate a functions which allows a recursive computation of the energy. Grammatical modeling – p. 39/62

  56. MTSAG for α -channels f energy � ( uvxyz ) = x. energy → � �� � � �� F 1 , 1 F 1 , 1 ε ε • • ε ε O I • • f energy  x. energy + ( u. hp + v. hp ) · ( y. hp + z. hp ) � ( uxyz ) = x. energy f energy � ( uvxyz ) = → � � � �� F 1 , 1 ε F 2 , 1 • •  → � �� � � �� 2 F 1 , 1 F 1 , 1 ε ε  • • O I ε ε •  ε ε I O • •  f energy  � ( uvxy ) = x. energy x. energy + ( u. hp ) · ( y hp + z. hp ) f energy  → � �� � � � ( uxyz ) = F 1 , 1 ε ε F 1 , 2  √ •  → � � � �� F 1 , 1 ε F 2 , 1 2 ε • • O • • I   I O ε ε • f energy  � ( uxy ) = x. energy  x. energy + ( u. hp + v. hp ) · ( y. hp ) f energy → � � �  � ( uvxy ) = F 1 , 1 F 2 , 2 ε √ •  → � �� � � F 1 , 1 F 1 , 2 2  ε ε ε • O I •  ε I • • O  f energy  → Cα ( x ) = x. energy  f energy F 1 , 1 � ( uxy ) = x. energy + u hp · y. hp  → � � �  F 1 , 1 F 2 , 2 ε O •   ε f energy I O • � ( uvxyz ) = x. energy  → � �� � � ��  f energy F 2 , 1 ε ε F 1 , 1 • •  → Cα ( x ) = x. energy  ε ε F 1 , 1 O I • •   I f energy  � ( uvxy ) = x. energy x. energy + ( u. hp + v. hp ) · ( y. hp + z. hp )  f energy → � �� � � � ( uvxyz ) = F 2 , 1 ε ε F 1 , 2  •  2 → � �� � � �� F 2 , 1 ε ε F 1 , 1 • • ε  O • • I  I O ε ε • •  f energy → Cα ( x ) = x. energy x. energy + ( u. hp + v. hp ) · ( y. hp ) F α f energy F 2 , 1 ap = � ( uvxy ) = √ → � �� � � F 2 , 1 ε ε F 1 , 2 2 O • ε f energy  I • • O � ( uvxyz ) = x. energy  → � �� � � ��  F 1 , 2 F 1 , 1 f energy ε ε • • → Cα ( x ) = x. energy  ε ε  F 2 , 1 O • • I   I f energy � ( uxyz ) = x. energy  x. energy + ( u. hp + v. hp ) · ( y. hp + z. hp ) f energy  → � � � �� � ( uvxyz ) = F 1 , 2 F 2 , 1 ε  • • 2 → � �� � � ��  F 1 , 2 F 1 , 1 ε ε ε ε • • O I •   ε ε I • • O f energy  → Cα ( x ) = x. energy x. energy + ( u. hp ) · ( y hp + z. hp )  f energy F 1 , 2  � ( uxyz ) = √  → � � � �� 2 F 1 , 2 ε F 2 , 1 O  • •  ε ε f energy I O  • � ( uvxyz ) = x. energy  → � �� � � �� f energy F 2 , 2 ε ε F 1 , 1  • • → Cα ( x ) = x. energy  F 1 , 2 O I ε ε  • •  I f energy  → Cα ( x ) = x. energy  x. energy + ( u. hp + v. hp ) · ( y. hp + z. hp ) f energy F 2 , 2  � ( uvxyz ) =  2 → � �� � � �� F 2 , 2 ε ε F 1 , 1 O  • •  f energy I O ε ε  • • ( xy ) = x. hp · K milieu + y. energy  Cα → � �  f energy • Cα → Cα ( x ) = x. energy  • =1 F 2 , 2  I f energy � ( x ) = x. hp · K milieu Cα → � • • =1 Grammatical modeling – p. 39/62

  57. MTSAG for α -channels An example ! Grammatical modeling – p. 40/62

  58. MTSAG for α -channels Periplasme Q G L V I A L R M C D V I L L D H L G A L A P Cytoplasme D E Grammatical modeling – p. 41/62

  59. MTSAG for α -channels S α , 115 . 64 S α , 115 . 64 S α , 115 . 64 S α , 115 . 64 S α , 115 . 64 S α , 115 . 64 S α , 115 . 64 Canal cyt , 77 . 54 Canal per , 35 . 31 F 1 , 1 F 1 , 1 O,cyt , 41 . 77 O,per , 35 . 31 F 1 , 1 F 1 , 1 I,cyt , 41 . 77 I,per , 35 . 31 F 1 , 2 F 2 , 1 O,cyt , 9 . 19 O,per , 23 . 99 F 2 , 1 F 1 , 1 I,cyt , 9 . 19 I,per , 23 . 99 F 1 , 1 F 1 , 2 O,cyt , 9 . 78 O,per , 2 . 81 C α C α cyt , 9 . 78 per , 2 . 81 C α C α cyt , 3 . 62 per , 2 . 81 � A � V � L � L � I � G � A � ε � ε � ε � ε � ε � ε � ε � D � E � P � D � L � H � C � L � R � ε � ε � ε � ε � ε � ε � ε � G � Q � M � I � V � L � G � A � L � ε � ε � ε � ε � ε � ε � ε � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Q ε ε ε ε ε ε ε A V L L I G A D E ε ε ε ε ε ε ε P D L H C L R G ε ε ε ε ε ε ε M I V L G A L 0 . 22 4 . 67 5 . 66 5 . 66 4 . 67 0 . 00 0 . 22 0 . 22 4 . 67 5 . 66 5 . 66 4 . 77 0 . 00 0 . 22 − 3 . 08 − 1 . 81 − 2 . 23 − 3 . 08 5 . 66 0 . 46 4 . 07 5 . 66 1 . 42 − 2 . 23 − 3 . 08 5 . 66 0 . 46 4 . 07 5 . 66 1 . 42 0 . 00 − 2 . 81 4 . 23 4 . 77 4 . 67 5 . 66 0 . 00 0 . 00 5 . 66 4 . 23 4 . 77 4 . 67 5 . 66 0 . 00 0 . 22 5 . 66 Grammatical modeling – p. 41/62

  60. ✡ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ✌ ✌ ☞ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✌ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✌ ✌ ✌ ☞ ☞ ✎ ✡ ☛ ☛ ☛ ☛ ☛ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ☛ ✡ ✡ � ✡ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ☛ ☛ ☞ ☛ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ✍ ✎ ✡ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✒ ✒ ✑ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✒ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✒ ✒ ✒ ✑ ✑ ✎ ✎ ✏ ✏ ✏ ✏ ✏ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✏ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✏ ✏ ✑ ✏ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✡ ✡ ✠ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✄ ✄ ✂ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ✠ ☎ ☎ ☎ ☎ ☎ ☎ ✄ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ✄ ✄ ✄ ✄ ✄ ✂ ✂ ☎ � ✁ ✁ ✁ � � � � � � � � � � ✁ � � � � � � � � � � � � � ✁ ✁ ✂ ✁ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ☎ ☎ ✆ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✞ ✞ ✆ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✟ ✟ ✞ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✟ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✟ ✟ ✟ ✟ ✞ ✞ ✞ ✆ ✝ ✝ ✝ ✝ ✆ ✆ ✆ ✞ ✆ ✆ ✆ ✆ ✆ ✝ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✝ ✆ ✝ ✝ ✞ ✞ ✞ ✞ ✞ ✝ ✞ ✞ ✞ ✞ ✞ ✝ ✝ ✞ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ V C K A L V L L P Periplasme Cytoplasme H I Q W C F A M I E MTSAG for β -channels W V G D Grammatical modeling – p. 42/62 L L

  61. MTSAG for β -channels S β , 71 . 92 S β O , 71 . 92 S β I , 70 . 75 S β O , 70 . 23 S β I , 66 . 34 T β seq,cyt , 61 . 63 T β seq,per , 37 . 13 T β seq,cyt , 21 . 12 T β cyt , 21 . 12 T β T β F O cyt , 24 . 50 per , 16 . 01 cyt , 21 . 12 F O F O F I cyt , 24 . 50 per , 16 . 01 cyt , 19 . 86 F I F I F O cyt , 20 . 40 per , 12 . 54 cyt , 16 . 25 F O F O F I cyt , 20 . 34 per , 9 . 10 cyt , 14 . 93 F I F I F O cyt , 15 . 74 per , 7 . 53 cyt , 10 . 9 F O F O F I − cyt , 11 . 71 per , 6 . 99 cyt , 9 . 78 F I + F I C β cyt , 10 . 54 per , 2 . 59 per , 9 . 78 C β C β C β cyt , 10 . 54 per , 2 . 59 per , 6 . 16 C β C β C β cyt , 4 . 46 per , − 0 . 22 per , 0 . 00 � C � A � V � L � ε � ε � ε � ε � K � P � V � I � L � H � L � ε � ε � ε � ε � ε � Q � A � F � M � W � I � C � ε � ε � ε � ε � ε � E � D � G � L � V � L � W � ε � ε � ε � ε � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ε ε ε ε C A V L K P ε ε ε ε ε V I L H L Q A ε ε ε ε ε F M W I C E D G ε ε ε ε L V L W 4 . 07 0 . 22 4 . 67 5 . 66 4 . 07 0 . 22 4 . 67 5 . 66 − 3 . 04 − 2 . 23 4 . 67 4 . 77 5 . 66 0 . 46 5 . 66 4 . 67 4 . 77 5 . 66 0 . 46 5 . 66 − 2 . 81 0 . 22 4 . 44 4 . 23 1 . 04 4 . 77 4 . 07 4 . 44 4 . 23 1 . 04 4 . 77 4 . 07 − 1 . 81 − 3 . 08 0 . 00 5 . 66 4 . 67 5 . 66 1 . 04 5 . 66 4 . 67 5 . 66 1 . 04 Grammatical modeling – p. 42/62

  62. MTSAG for TM channels What has not been said : TM-channel closure, TM α -helix selection, turn selection (between secondary structures), constraints on the overlapping of the motifs. Grammatical modeling – p. 43/62

  63. Performance evaluation Performance evaluation How to realize a structure prediction ? How to evaluate a prediction ? Results. Performance evaluation – p. 44/62

  64. How to realize a structure prediction ? syntax analysis (GCP algorithm), implementation using mtsag2c (F . Lefebvre), software tmmtsag ... and now ASTRiD (web interface). Performance evaluation – p. 45/62

  65. How to realize a structure prediction ? Example of an α -channel : Bacteriorhodopsin QAQITGRPEWIWLALGTALMGLGTLYFLVKGMGVSDPDAKKFYAITTLVPAIAFTMYLSMLLGYGLTMVPFGGEQNPIYWARYADWLFTTPLLLLDLALL .......TTHHHHHHHHHHHTTHHHHHHHHSS..S.HHHHHHHHHHHHTHHHHHHHHHHHHTT.....SSS.SSS....STTHHHHTTTHHHHTTTTSTT ............MMMMMMMMMMMMMMMMMMMMMMiiiiiiiPPMPPMPPMMPPMMPPMMPPMMPPMMPPooooooooPPMPPMPPMPPMMPPMPPMPPMP ............PMMPMMPMMPMMPMMPMMPMMPiiiiiiiPMMPMMPPMMPPMMPPMMPPMMPPMMPPooooooooPPMMPPMMPPMMPPMMPMMPMMP VDADQGTILALVGADGIMIGTGLVGALTKVYSYRFVWWAISTAAMLYILYVLFFGFTSKAESMRPEVASTFKVLRNVTVVLWSAYPVVWLIGSEGAGIVP TT..HHHHHHHHHHHHHHHHHHHHHHS..SSS.HHHHHHHHHHHHHHHHHHHTTTTTTT..TT.SHHHHTTHHHHHHHHHHHHHHHHHHTTTTSSSSSS. PiiiiiiPPMPPMPPMPPMPPMPPMMPoooPPMMPPMMPPMMPPMMPPMMPPMMPPiiiiiiPPMMPMMPPMPPMMPMMPPMMPPMPPMPPooooooPPM PiiiiiiPPMPPMPPMPPMPPMPPMMPoooPMMPPMPPMPPMPPMPPMPPMPPMMPiiiiiiPPMMPPMMPMMPMMPMMPPMMPPMPPMPPooooooMMM LNIETLLFMVLDVSAKVGFGLILLRSRAIFGEAEAPEPSAGDGAAATS SHHHHHHHHHHHHHHTHHHHTTTT........................ PPMPPMPPMPPMPPMMPMMPPMPP........................ MMMMMMMMMMMMMMMMMMMMMMMM........................ pseudo folding energy : 1583.92 Performance evaluation – p. 46/62

  66. How to realize a structure prediction ? tape 1 PPMPPMPPMPPMPPMPPMMPoooPPMMPPMMPPMMPPMMPPMMPPMMPPiiiiiiPPMMPMMPPMPPMMPMMPPMMPPMPPMPP tape 2 PPMPPMPPMPPMPPMPPMMPoooPMMPPMPPMPPMPPMPPMPPMPPMMPiiiiiiPPMMPPMMPMMPMMPMMPPMMPPMPPMPP helice k−1 helice k+1 helice k Performance evaluation – p. 46/62

  67. How to realize a structure prediction ? Example of a β -channel : Porin MAPKDNTWYTGAKLGWSQYHDTGLINNNGPTHENKLGAGAFGGYQVNPYVGFEMGYDWLGRMPYKGSVENGAYKAQGVQLTAKLGYPITDDLDIYTRLGG ....TT.EEEEEEEEEES.S.....SS.......EEEEEEEEEEE.BTTEEEEEEEEEEEE.....SS....EEEEEEEEEEEEEEESSSSEEEEEEEEE ...............EEEEEEEEEEooooooooooCBCBCBCBCiiiiiiBCBCBCBCBCBCooooooooooooooBCBCBCBCBiiiiiiiiBCBCBCB ...............CBCBCBCBCBooooooooooBCBCBCBCBiiiiiiBCBCBCBCBCBCooooooooooooooBCBCBCBCBiiiiiiiiCBCBCBC MVWRADTYSNVYGKNHDTGVSPVFAGGVEYAITPEIATRLEYQWTNNIGDAHTIGTRPDNGMLSLGVSYRFG EEEEEEE..SSS..EEEEEEEEEEEEEEEEESSSSEEEEEEEEEE......SS........EEEEEEEEEE. CBCBCooooooooooooooCBCBCBCBCiiiCBCBCBCBCBCoooooooooooooooooooBCBCBCBCBC. BCBCBooooooooooooooCBCBCBCBCiiiCBCBCBCBCBCoooooooooooooooooooEEEEEEEEEE. pseudo folding energy : 402.15 Performance evaluation – p. 46/62

  68. How to evaluate a prediction ? observed : ......HHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHH........ predition : ..HHHHHHHHHHHHHHH.........HHHHHHHHHHH.............HHHHHHHHHHHHHHH... Definition A secondary structure is said to be predicted, if it intersects one and only one observed secondary structure. Definition A structure is correctly predicted if all its secondary structures are predicted, almost predicted if the non-predicted secondary structures do not intersect any observed secondary structures, and non-predicted otherwise. Performance evaluation – p. 47/62

  69. How to evaluate a prediction ? ........HHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHH............. ..HHHHHHHHHHHHHHHHH.........HHHHHHHHHHHHH...............HHHHHHHHHHHHHHH........ Performance evaluation – p. 48/62

  70. How to evaluate a prediction ? t c e r ........HHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHH............. r o ..HHHHHHHHHHHHHHHHH.........HHHHHHHHHHHHH...............HHHHHHHHHHHHHHH........ C Performance evaluation – p. 48/62

  71. How to evaluate a prediction ? t c e r ........HHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHH............. r o ..HHHHHHHHHHHHHHHHH.........HHHHHHHHHHHHH...............HHHHHHHHHHHHHHH........ C ........HHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHH............. ..HHHHHHHHHHHHHHHHH..............HHHHHHHHHHHHHHHHHH............................ Performance evaluation – p. 48/62

  72. How to evaluate a prediction ? t c e r ........HHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHH............. r o ..HHHHHHHHHHHHHHHHH.........HHHHHHHHHHHHH...............HHHHHHHHHHHHHHH........ C t s o ........HHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHH............. m l ..HHHHHHHHHHHHHHHHH..............HHHHHHHHHHHHHHHHHH............................ A Performance evaluation – p. 48/62

  73. How to evaluate a prediction ? t c e r ........HHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHH............. r o ..HHHHHHHHHHHHHHHHH.........HHHHHHHHHHHHH...............HHHHHHHHHHHHHHH........ C t s o ........HHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHH............. m l ..HHHHHHHHHHHHHHHHH..............HHHHHHHHHHHHHHHHHH............................ A ........HHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHH............. ..HHHHHHHHHHHHHHHHH.................HHHHHHHHHHHHHHHHHHHHHH....HHHHHHHHHHHHHHH.. Performance evaluation – p. 48/62

  74. How to evaluate a prediction ? t c e r ........HHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHH............. r o ..HHHHHHHHHHHHHHHHH.........HHHHHHHHHHHHH...............HHHHHHHHHHHHHHH........ C t s o ........HHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHH............. m l ..HHHHHHHHHHHHHHHHH..............HHHHHHHHHHHHHHHHHH............................ A o ........HHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHHH...HHHHHHHHHHHHHHHHH............. N ..HHHHHHHHHHHHHHHHH.................HHHHHHHHHHHHHHHHHHHHHH....HHHHHHHHHHHHHHH.. Performance evaluation – p. 48/62

  75. How to evaluate a prediction ? Estimator for the secondary structure element prediction Q ok = 100 · number of correctly predicted structures number of proteins = 100 · number of TM segments correctly predited Q % obs stm number of TM segment observed = 100 · number of TM segments correctly predited Q % pred stm number of TM segment predicted Performance evaluation – p. 49/62

  76. How to evaluate a prediction ? Estimator for the secondary structure assignment prediction Q 2 = 100 · number of correctly predicted residus number of residus = 100 · number of correctly predicted residus in TM segment Q % obs 2 T number of residus observed in TM segments = 100 · number of correctly predicted residus in TM segment Q % pred 2 T number of residus predicted in TM segments = 100 · number of correctly predicted residus in non-TM segment Q % obs 2 N number of residus observed in non-TM segments = 100 · number of correctly predicted residus in non-TM segment Q % pred 2 N number of residus predicted in non-TM segments Performance evaluation – p. 50/62

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend