rovibrational quantum interferometers and gravitational
play

Rovibrational Quantum Interferometers and Gravitational Waves D. - PowerPoint PPT Presentation

The Galileo Galilei Institute for Theoretical Physics Rovibrational Quantum Interferometers and Gravitational Waves D. Lorek, A. Wicht, C. L ammerzahl, H. Dittus D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb.


  1. The Galileo Galilei Institute for Theoretical Physics Rovibrational Quantum Interferometers and Gravitational Waves D. Lorek, A. Wicht, C. L¨ ammerzahl, H. Dittus D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 1 / 17

  2. Motivation Molecular Interferometry basic features of Atom Interferometry coherent manipulation of internal molecular quantum states molecules can distinguish between different directions molecular states are sensibel to non–isotropic effects → Gravitational Wave Detectors D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 2 / 17

  3. Contents Motivation 1 Quantum Interferometry 2 A Molecule in the Field of a Gravitational Wave 3 Gravitational Waves and Charged Point Masses Gravitational Waves and the HD + Molecule Gravitational Wave Detection 4 Conclusion 5 D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 3 / 17

  4. Quantum Interferometers Atom and Molecular Interferometry applications: fine structure constant, gravitational acceleration, gravity gradients, inertial sensors, test of GR, . . . frequency measurement ↔ second phase sensitive frequency measurement √ → sensitivity increases ∼ T (not ∼ T ) truly differential phase (frequency) measurement - cancellation of common mode phase evolution (common frequency) Stanford atom interferometer: relative shift of 10 − 19 D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 4 / 17

  5. Quantum Interferometers Atom Interferometric “Lever Arm” energy difference between paths: E IF assumption: effect causes a shift, that scales with optical frequency E s : ∆ E = ∆ E 2 − ∆ E 1 = h · E s sensitivity ∆ E / E > ǫ ref ∼ 10 − 15 ——– D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 5 / 17

  6. Quantum Interferometers Atom Interferometric “Lever Arm” energy difference between paths: E IF assumption: effect causes a shift, that scales with optical frequency E s : ∆ E = ∆ E 2 − ∆ E 1 = h · E s sensitivity ∆ E / E > ǫ ref ∼ 10 − 15 ——– laser spectroscopy: h · E s / E s > ǫ ref atom interferometry: h · E s / E IF > ǫ ref minimal detectable h : E IF h min = ǫ ref E s D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 5 / 17

  7. Molecular Quantum Interferometry Rovibrational Quantum Interferometers coherent manipulation of different individual rotational–vibrational molecular quantum states molecules are not spherically symmetric → molecules can distinguish between different directions in space w. r. t. their internuclear axis → molecular spectra depend on the orientation of the molecule, if a non–isotropic situation is considered D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 6 / 17

  8. Molecular Quantum Interferometry Gravitational Wave Detection prepare molecules in a coherent superposition of two mutually orthogonal orientations in the x–y–plane ↔ two paths of a quantum interferometer linearly polarized GW (z–direction) the GW modifies the internuclear distance periodically free quantum evolution: non–isotropic perturbation removes the orientational degeneracy → states will acquire a quantum phase difference D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 6 / 17

  9. Gravitational Waves and Charged Point Masses Gravitational Waves linearized gravity: g µν = η µν + h µν η µν = diag( − 1 , 1 , 1 , 1) , | h µν | ≪ 1 TT gauge : ✷ h ij = 0 , h µ 0 = 0 , δ kl h ik , l = 0 , δ ij h ij = 0 D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 7 / 17

  10. Gravitational Waves and Charged Point Masses Quantum Physics Klein–Gordon equation minimally coupled to gravity and to the Maxwell field: g µν D µ D ν ψ − m 2 c 2 � 2 ψ = 0 covariant derivative: D µ T ν = ∂ µ T ν + { ν µσ } T σ − ie � c A µ T ν 2 g νρ ( ∂ µ g σρ + ∂ σ g µρ − ∂ ρ g µσ ) µσ } := 1 Christoffel symbol: { ν Maxwell potential: A µ D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 8 / 17

  11. Gravitational Waves and Charged Point Masses Quantum Physics Klein–Gordon equation minimally coupled to gravity and to the Maxwell field: g µν D µ D ν ψ − m 2 c 2 � 2 ψ = 0 insert: g µν = η µν + h µν � i � [ c 2 S 0 + S 1 + c − 2 S 2 + . . . ] � Ansatz [1]: ψ = exp compare equal powers of c 2 : [1] C. Kiefer, T. P. Singh, Phys. Rev. D 44 , 1067–1076 (1991) D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 8 / 17

  12. Gravitational Waves and Charged Point Masses odinger Equation: i � ∂ t ˜ φ = H ˜ Schr¨ φ Hamiltonian [1]: δ ij − h ij � δ ij − h ij � H = − � 2 ∂ i ∂ j − eA 0 + ie � A i � � ∂ j 2 m m c [1] S. Boughn, T. Rothman, Class. Quantum Grav. 23 , 5839–5852 (2006) D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 8 / 17

  13. Gravitational Waves and Charged Point Masses odinger Equation: i � ∂ t ˜ φ = H ˜ Schr¨ φ Hamiltonian: δ ij − h ij � δ ij − h ij � H = − � 2 ∂ i ∂ j − eA 0 + ie � A i � � ∂ j 2 m m c for non–relativistic systems A i ≪ A 0 → Interaction Hamiltonian: H I = � 2 2 m h ij ∂ i ∂ j D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 8 / 17

  14. Gravitational Waves and Charged Point Masses Electric Potential A µ inhomogenous Maxwell equations coupled to gravity: 4 π j µ = D ν ( g µρ g νσ F ρσ ) Field-Strength Tensor: F ρσ = ∂ ρ A σ − ∂ σ A ρ insert: g µν = η µν + h µν point charge: j 0 = q δ 3 ( r ) and j i = 0 D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 9 / 17

  15. Gravitational Waves and Charged Point Masses Electric Potential A µ inhomogenous Maxwell equations coupled to gravity: 4 π j µ = D ν ( g µρ g νσ F ρσ ) insert: g µν = η µν + h µν point charge: j 0 = q δ 3 ( r ) and j i = 0 µν · exp( i [ � periodic gravitational waves: h µν = h 0 k � x − ω t ]) Influence of the GW is adiabatic (low frequency) and quasi–constant (long wavelength) → potentials are static Ansatz: A 0 = q / r + qA (1) A i = qA (1) 0 , i D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 9 / 17

  16. Gravitational Waves and Charged Point Masses Potential A 0 of a Point Charge q in the Field of a GW x i h 0 ij x j � x − ω t ) � 2 r 2 e i ( � A 0 = q k � 1 − r D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 9 / 17

  17. Gravitational Waves and the HD + Molecule HD + Molecular Hamiltonian molecular Hamiltonian contains: H = T e + V en 1 + V en 2 + V nn + T n 1 + T n 2 + δ H T : kinetic energy V : potential energy e , n 1, n 2: electron, first nucleus, second nucleus . . . D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 10 / 17

  18. Gravitational Waves and the HD + Molecule Perturbation to Molecular Hamiltonian electronic kinetic energy: Radial dependence of ( h · R ∞ ) δ ˜ T e ( R ) cos(2 φ )(1 − cos (2 θ )) perturbations electronic Coulomb energy: ( h · R ∞ ) δ ˜ V en ( R ) cos(2 φ )(1 − cos (2 θ )) nuclear Coulomb energy: − ( h · R ∞ ) (2 R ) − 1 cos(2 φ )(1 − cos (2 θ )) D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 11 / 17

  19. Gravitational Waves and the HD + Molecule Perturbation to Molecular Hamiltonian electronic kinetic energy: Radial dependence of ( h · R ∞ ) δ ˜ T e ( R ) cos(2 φ )(1 − cos (2 θ )) perturbations electronic Coulomb energy: ( h · R ∞ ) δ ˜ V en ( R ) cos(2 φ )(1 − cos (2 θ )) nuclear Coulomb energy: − ( h · R ∞ ) (2 R ) − 1 cos(2 φ )(1 − cos (2 θ )) Perturbation Energy: ∼ 0 . 1 · h · R ∞ D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 11 / 17

  20. Gravitational Waves and the HD + Molecule Total Perturbation Operator Perturbation Matrix GW can not drive rotational, vibrational or electronic transitions GW only couples states with | ∆ m | = 2 as expected from quadrupole nature of GW D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 12 / 17

  21. Gravitational Waves and the HD + Molecule Eigenvalues eigenvalues for the total perturbation operator for the vibrational ground state v = 0 D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 13 / 17

  22. Gravitational Waves and the HD + Molecule Eigenvalues Differential Energy Shift: 60 µ Hz for h = 10 − 19 D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 13 / 17

  23. Gravitational Waves and the HD + Molecule State Spectra state spectrum for l = 1 state spectrum for some l = 5 eigenstates eigenstates D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 14 / 17

  24. Gravitational Wave Detection Spherical Part of the Probability Distribution |� � R | ψ �| 2 D. Lorek (ZARM) Rovibrational QIs and Gravitational Waves Firenze, 24th Feb. 2009 15 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend