rovibrational cooling of molecules by optical pumping
play

Rovibrational cooling of molecules by optical pumping Experimental - PowerPoint PPT Presentation

Rovibrational cooling of molecules by optical pumping Experimental results for laser cooling of molecules Isam Manai isam.manai@u-psud.fr Laboratoire Aim Cotton Orsay France Quantum Technologie Conference III Septembre 9-15, 2012 Cold


  1. Rovibrational cooling of molecules by optical pumping Experimental results for laser cooling of molecules Isam Manai isam.manai@u-psud.fr Laboratoire Aimé Cotton Orsay France Quantum Technologie Conference III Septembre 9-15, 2012

  2. Cold Molecules: Why? n/cm 3 l DB ~ distance between particles 10 12 Quantum properties Bose-Einstein gaz Quantum information 10 9 Control of collisions small velocity Quantum chemistry Precision measurement l DB = h/mv ∝ T -1/2 (quantum size) ~ 10 6 Fundamental test classical size of particles (1nm) 10 -9 T/K 10 -6 10 -3 1 nK µK mK K

  3. Precise/long measurement • Cold molecules  Slow molecules  long interaction time D t OH, CO, … radiative lifetime (50ms) PRL 95 013003 (2005) • D E ~h/ D t  precise measurement (atomic clock) ND3 hyperfine structure (Hz) EPJD 31 337349 (2004) Effect of black body radiation! G. Meijer (Berlin) , J. Ye (JILA), …

  4. Fundamental test Variation of constant (10 3 better than atoms): PRL 99, 150801 (2007) * OH electronic level PRL 96 143004 (2006). Compare fine-structure with astrophysical data Da/a < 10 -16 /year * Variation of m e /m p or constant α in spectra. Conincidence vibration and fine structure levels * Electron dipole (d) moment YbF (Hinds), PbO (DeMille, Doyle),... Shift – d.E due to electric E field inside the molecule GV/cm Improved measurement of the shape of the electron: Nature 473, 493 (26 May 2011) • Chirality: BaF or HSiO D. DeMille et al. PRL 100, 023003 (2008)

  5. Control of (Reactive) collisions: quantum chemistry • Reactions at zero temperature (Resonnance, Tunneling) • Collisions in fields. External field to control dynamic • Create cold atoms by photodissociation SO 2  SO + O EPJD 46, 463 (2008) • CH 3 F + Ca +  CaF + + CH3 T. Sofltey PRL 100, 043203 (2008) • J. Ye, G. Meijer, G. Rempe, J. Doyle, M. Köln, H. Lewandowski … • macromolécules (perfluorinated) M. Arndt • Ions : M. Drewsen, S. Schiller, R.Wester , …

  6. Outline 1)Photoassociation and cold molecules 2)Rovibrational Cooling of Cesium molecules by Optical pumping 3) Conclusion

  7. Photoassociation Energy Photoassociation 6s+6p 3/2 (1) 1/R 3 Absorption of one photon by two cold atoms (T~100mK) (1) (2') (2'') Desexcitation Hot atoms (2') 6s 1/2 +6s 1/2 k B T 1/R 6 (2'') Cold molecules R Molecules in several vibrational levels 25 50 75 100 125 Internuclear distance

  8. Experimental Setup Cs - MOT ~ 5 . 10 7 atoms ~10 11 at/cm 3 ~100µK - PA: Ti:Sa continu, 852 nm, ~1W Detection laser PA laser - Detection (ionization): pulsed laser 10 Hz-7ns, 5-10mJ/pulse - Optical pumping: femtoseconde laser, 12.5 ns, 770 nm, 1W

  9. Population after Photoassociation PA Détection t (ms) 20 40 49 50 30000 Cs+ 2 25000 90 Laser d'ionisation 80 20000 70 Energie ( cm -1 ) C   u B  u 15000 60 50 10000 Cs+ 2 Em. Spon 40 v X = 0  v C = 0 v X = 0  v C = 1 PA 30 5000 20 V X 0 10 X   + 6s+ g 0 -5000 5 10 15 20 25 30 15900 15920 15940 15960 15980 16000 -1 ) R ( a 0 ) Fréquence de détection (cm

  10. Need: Vibrational cooling Optical Pumping using shaped broadband laser 9600 1  u B 9500 9400 9300 -1 ) 1 2 3 i Energy (cm 9200 -3200 -3300 -3400 -3500 1  + X -3600 v=0 v=0 v=0 g 8 9 10 8 9 10 8 9 10 8 9 10 R (A 0 ) R (A 0 ) R (A 0 ) R (A 0 ) 140 120 Intensité 100 80 60 40 20 0 12800 12900 13000 13100 -1 ) nombre d'onde (cm Science 321, 232 (2008)

  11. Population after pumping  Optical pumping PA opt. pump Detection  Efficiency ~ 65 % t (ms) 20 40 49 50 30000 Cs+ 2 25000 Laser d'ionisation 90 90 vX-vC = 0-2 0-1 0-0 80 80 20000 70 70 Energie ( cm -1 ) C   u B  u 15000 60 60 50 50 10000 Cs+ 2 Em. Spon 40 40 PA 30 30 5000 Femto 20 20 V X 0 X   + 10 10 6s+ g 0 0 -5000 5 10 15 20 25 30 15900 15900 15920 15920 15940 15940 15960 15960 15980 15980 16000 16000 R ( a 0 ) -1 ) Fréquence de détection (cm

  12. Pumping to the dark v=1 Intensity (Arb) NJP 11 055037 (2009) Intensity (Arb) 0.8 Simulation 0.4 0.0 X Energy X X 0.8 Experiment 0.4 V=1 dark 0.0 12750 12900 13050 13200 Other v Wavenumber ( cm-1 ) coupled Internuclear distance

  13. Better amplitude shaping Liquid Crystal spatial light modulator (SLM) 640 pixel 0.06nm resolution ~ 1 cm -1 Collaboration with Béatrice Chatel, Laboratoire Collision Agrégat Réactivité, Toulouse

  14. Pumping to a chosen dark state ! V=0 dark a) 3% 0-0 0-1 Intensity (Arb) 40 NJP 11 055037 (2009) 0.8 off/on 30 ratio + Cs 2 0.4 20 10 0.0 0 12600 12800 13000 13200 15920 15960 16000 b) Intensity (Arb) 40 1-0 1-1 1-2 1-3 0.8 X Energy V=1 30 X + Cs 2 X 0.4 20 10 0.0 V=2 dark 0 12600 12800 13000 13200 c) 15920 15960 16000 40 Intensity (Arb) 2-1 2-2 2-3 2-4 0.8 V=2 30 Other v + Cs 2 20 coupled 0.4 10 0.0 0 12600 12800 13000 13200 15920 15960 16000 d) Intensity (Arb) 60 7-8 7-9 7-10 7-11 Internuclear distance 0.8 V=7 Cs 2 + 40 0.4 20 Efficiency ~ 60% with SLM 0.0 0 15920 15960 16000 12600 12800 13000 13200 Wavenumber (cm -1 ) Wavenumber (cm -1 )

  15. Population after pumping  Optical pumping PA opt. pump Detection  Efficiency ~ 65 % t (ms) 20 40 49 50 In one vibrational level many rotational levels are populated 30000 Cs+ 2 25000 Laser d'ionisation 90 90 vX-vC = 0-2 0-1 0-0 80 80 20000 70 70 Energie ( cm -1 ) C   u B  u 15000 60 60 50 50 10000 Cs+ 2 Em. Spon 40 40 PA 30 30 5000 Femto 20 20 V X 0 X   + 10 10 6s+ g 0 0 -5000 5 10 15 20 25 30 15900 15900 15920 15920 15940 15940 15960 15960 15980 15980 16000 16000 R ( a 0 ) -1 ) Fréquence de détection (cm

  16. Detection of the rotation v C =1 1  u C J C = 4 3 2 1 v C =0  Detection: • For one vibrational level many rotational levels v X =1 are populated • Rotational separation (~600MHz)  Unresolved with the REMPI detection (3 GHz) 1  + X g J X = 3 2 1 0 v X =0

  17. Detection of the rotation  Detection: • For one vibrational level many rotational levels are populated • Rotational separation (~600MHz) Pulsed laser  Unresolved with the REMPI detection (3 GHz) J B = 4  Detection with a narrowband laser 3 2  Desexcitation to many vibrational levels 1  REMPI detection in v X = 7 v B =3 Diode de détection R(0) Q(2) R(2) v X =7 20 + Number P(2) Q(4) R(4) P(4) 16 12 Cs 2 J X = 4 3 2 8 1 0 13141.75 13141.80 13141.85 13141.90 13141.95 13142.00 v X =0 -1 ] Wavenumber [cm

  18. Selection rules : Δ J = 0, ±1 +  - 2) Rotational cooling a – P : J decrease by 1 in absorption modifies the vibration – Q : J constant  vib. cooling needed – R : J increase by 1 in absorption In practice: Too cool the rotation we use Cs 2 rotational structure excite the P branch too small to be shaped with grating R(0) R(2) Q(2) 20 + Number Q(4) P(2) R(4) P(4) 16 12 Cs 2 8 13141.75 13141.80 13141.85 13141.90 13141.95 13142.00 Wavenumber [cm -1 ] Only Even rotational distribution are populated The rotational states have a (+/-) parity given by the sign of (-1) J’+1 in 0 g - and (-1) J in 1 X∑ g

  19. Rotational cooling Selection rules : Δ J = 0, ±1 +  - – P : J decrease by 1 in absorption – Q : J constant – R : J increase by 1 in absorption V= 0 , J = 0

  20. The green spectrum : only odd rotational levels are populated The black one : only even rotational levels are populated The rotational states have a (+/-) parity given by the sign of (-1) J’+1 in 0 g - and (-1) J in 1 X∑ g Q(3) 16 R(3) R(1) 14 nbre d'ions P(5) 12 P(3) Q(5) Q(1) 10 8 13.14200x10 3 13.14180 13.14185 13.14190 13.14195 fréquences [cm-1] R(0) Q(2) R(2) 20 + Number P(2) Q(4) P(4) R(4) 16 12 Cs 2 8 13141.75 13141.80 13141.85 13141.90 13141.95 13142.00 Wavenumber [cm -1 ]

  21. V= 0 , J = 1 V= 0 , J = 4

  22. Conclusion - Accumulation of molecules in a choosen vibrational level using a shaped broadband femtoseconde laser New Journal of Physics, 11(5)(2009) Journal of Modern Optics, 56:2089-2099,(2009). Molecular Physics, 108 :795{810, (2010) Our vibrational cooling method is genaral method and can be used in any molecules, demonstrated recently in Bigelow group for NaCs molecules Optics Express, Vol. 20, No. 14, (2012)

  23. Conclusion - Rovibrational cooling of Cs 2 molecules are also demonstrate Accepted in PRL V= 0 , J = 0 Transfert of molecules in a choosen rotational level V= 0 , J = 1 V= 0 , J = 4

  24. Perspectives * With rovibrational cooling collision between molecules and atoms can be studied. * The method of rovibrational cooling could be extended to other molecules and molecular beams. * And also opens up general perspectives in laser cooling the external degrees of freedom of molecules.

  25. Visitors  Marin Pichler  Maria Allegrini  Goran Pichler  Emiliya Dimova  Lirong Wang Theory LAC  Nadia Bouloufa  Olivier Dulieu Experiment LAC Thank you for your attention !  Isam Manai Collaboration  Ridha Horchani  Mehdi Hamamda  Béatrice Chatel  Sébastien Weber  Daniel Comparat (LCAM, Toulouse, France)  Hans Lignier  Pierre Pillet

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend