pumping and population inversion laser amplification
play

Pumping and population inversion - Laser amplification Gustav - PowerPoint PPT Presentation

Pumping and population inversion - Laser amplification Gustav Lindgren 2015-02-12 Contents Part I: Laser pumping and population inversion Steady state laser pumping and population inversion 4-level laser Solve rate-equations in steady-state


  1. Pumping and population inversion - Laser amplification Gustav Lindgren 2015-02-12

  2. Contents Part I: Laser pumping and population inversion Steady state laser pumping and population inversion 4-level laser Solve rate-equations in steady-state 3-level laser Laser gain saturation Introduce the upper-level model Upper-level laser Transient rate equations Solve rate-equations under Upper-level laser transients Three-level laser

  3. Atomic transitions Energy-level diagram of Nd:YAG Simplify into ->

  4. 4-level laser Rate equations: Pumping - Decay 𝑒𝑂 4 𝑒𝑒 = 𝑋 π‘ž 𝑂 1 βˆ’ 𝑂 4 βˆ’ 𝑂 4 /𝜐 41 𝑒𝑂 3 𝑒𝑒 = 𝑂 4 βˆ’ 𝑂 3 Decay In/Out 𝜐 43 𝜐 3 𝑒𝑂 2 𝑒𝑒 = 𝑂 4 + 𝑂 3 βˆ’ 𝑂 2 Same 𝜐 42 𝜐 32 𝜐 21 Atom conservation: 𝑂 1 + 𝑂 2 + 𝑂 3 + 𝑂 4 = 𝑂 β€œOptical approximation”, β„πœ•/𝑙 𝐢 π‘ˆ β‰ͺ 1 No thermal occupancy

  5. 4-level laser At steady state: 𝑂 3 = 𝜐 3 𝑂 4 𝜐 43 Define beta 𝜐 21 + 𝜐 43 𝜐 21 𝑂 2 = 𝑂 3 ≑ 𝛾𝑂 3 𝜐 32 𝜐 42 𝜐 3 For a good laser: No direct decay into lev2 𝛿 42 β‰ˆ 0 (𝑗. 𝑓. 𝜐 42 β†’ ∞) , β†’ 𝛾 β‰ˆ 𝜐 21 β†’ 𝜐 32 Fluorescent quantum efficiency, πœƒ ≑ 𝜐 4 β‹… 𝜐 3 𝜐 43 𝜐 𝑠𝑏𝑒 Useful photons: from 4 -> upper laser * From upper laser that lase

  6. 4-level laser Calculate the pop. Inv. Population inversion, 𝑂 3 βˆ’ 𝑂 2 1 βˆ’ 𝛾 πœƒπ‘‹ π‘ž 𝜐 𝑠𝑏𝑒 = 1 + 1 + 𝛾 + 2𝜐 43 𝑂 𝜐 𝑠𝑏𝑒 πœƒπ‘‹ π‘ž 𝜐 𝑠𝑏𝑒 For a good laser: 𝜐 43 β‰ͺ 𝜐 𝑠𝑏𝑒 - Short lev 4 lifetime 𝛾 β‰ˆ 𝜐 21 /𝜐 32 β†’ 0 - Short lower lev lifetime πœƒ β†’ 1 - High fluorescent quantum efficiency 𝑋 π‘ž 𝜐 𝑠𝑏𝑒 β‡’ 𝑂 3 βˆ’ 𝑂 2 β‰ˆ 𝑂 1 + 𝑋 π‘ž 𝜐 𝑠𝑏𝑒 - Red curves

  7. 3-level laser As before, for 3-level Rate equations: Pumping – decay BUT lower level is GROUND level 𝑒𝑂 3 π‘ž 𝑂 1 βˆ’ 𝑂 3 βˆ’ 𝑂 3 𝑒𝑒 = 𝑋 𝜐 3 𝑒𝑂 2 𝑒𝑒 = 𝑂 3 βˆ’ 𝑂 2 decays 𝜐 32 𝜐 21 Atom conservation: 𝑂 1 + 𝑂 2 + 𝑂 3 = 𝑂 as before πœƒ = 𝜐 3 𝜐 21 As before 𝜐 32 𝜐 𝑠𝑏𝑒 𝛾 = 𝑂 3 = 𝜐 32 Different! 𝑂 2 𝜐 21

  8. 3-level laser No pumping NEGATIVE pop. Inv. At steady state, -> 1 βˆ’ 𝛾 πœƒπ‘‹ π‘ž 𝜐 𝑠𝑏𝑒 βˆ’ 1 𝑂 2 βˆ’ 𝑂 1 = π‘ž 𝜐 𝑠𝑏𝑒 + 1 𝑂 1 + 2𝛾 πœƒπ‘‹ Requirements for pop. inversion: 𝛾 < 1 As before 1 𝑋 π‘ž 𝜐 𝑠𝑏𝑒 β‰₯ πœƒ 1βˆ’π›Ύ New For a good laser, 𝛾 β†’ 0 πœƒ β†’ 1 β‰ˆ 𝑋 π‘ž 𝜐 𝑠𝑏𝑒 βˆ’ 1 𝑂 2 βˆ’ 𝑂 1 π‘ž 𝜐 𝑠𝑏𝑒 + 1 𝑂 𝑋 Red curves

  9. Population inversion All else equal: 3-level requires more pumping

  10. Upper-level laser Lasing between two levels high above ground-level 𝑒𝑂 3 Pump into upper lev. = 𝑋 π‘ž 𝑂 0 βˆ’ 𝑂 3 𝑒𝑒 π‘žπ‘£π‘›π‘ž Assuming, 𝑂 0 β‰ˆ 𝑂 ≫ 𝑂 3 and pump efficiency, πœƒ π‘ž , 𝑒𝑂 3 most atoms in ground- β‰ˆ πœƒ π‘ž 𝑋 π‘ž 𝑂 ≑ 𝑆 π‘ž state 𝑒𝑒 π‘žπ‘£π‘›π‘ž Rate equations: Signal included 𝑒𝑂 2 𝑒𝑒 = 𝑆 π‘ž βˆ’ 𝑋 𝑑𝑗𝑕 𝑂 2 βˆ’ 𝑂 1 βˆ’ 𝛿 2 𝑂 2 𝑒𝑂 1 𝑒𝑒 = 𝑋 𝑑𝑗𝑕 𝑂 2 βˆ’ 𝑂 1 + 𝛿 21 𝑂 2 βˆ’ 𝛿 1 𝑂 1

  11. Upper-level laser At steady state: 𝑋 𝑑𝑗𝑕 + 𝛿 21 𝑂 1 = 𝑆 π‘ž 𝑋 𝑑𝑗𝑕 𝛿 1 + 𝛿 20 + 𝛿 1 𝛿 2 𝑋 𝑑𝑗𝑕 + 𝛿 1 𝑂 2 = 𝑆 π‘ž 𝑋 𝑑𝑗𝑕 𝛿 1 + 𝛿 20 + 𝛿 1 𝛿 2 No atom conservation! For example, changing pump changes N

  12. Upper-level laser The pop. Inv. Saturates as the signal increases Population inversion: 𝑆 π‘ž 𝛿 1 βˆ’ 𝛿 21 Δ𝑂 21 = 𝑂 2 βˆ’ 𝑂 1 = β‹… 1 + 𝛿 1 + 𝛿 20 𝛿 1 𝛿 2 𝑋 𝑑𝑗𝑕 𝛿 1 𝛿 2 𝛿 1 βˆ’π›Ώ 21 Define the small-signal population inversion, Δ𝑂 0 = 𝛿 1 𝛿 2 𝑆 π‘ž and the effective recovery time, 𝜐 𝑓𝑔𝑔 = 𝜐 2 1 + 𝜐 1 𝜐 20 the expression becomes: 1 Ξ”N 21 = Δ𝑂 0 1 + 𝑋 𝑑𝑗𝑕 𝜐 𝑓𝑔𝑔 For a good laser: 𝛿 2 β‰ˆ 𝛿 21 𝛿 20 β‰ˆ 0 1 β†’ Ξ”N 21 β‰ˆ 𝑆 π‘ž 𝜐 2 βˆ’ 𝜐 1 β‹… 1 + 𝑋 𝑑𝑗𝑕 𝜐 2 Prop. To pump-rate and lifetimes, saturation behavior

  13. Upper-level laser β€’ Condition for obtaining inversion, 𝜐 1 /𝜐 21 < 1 i.e. fast relaxation from lower level and slow relaxation from upper level β€’ Small-signal gain, 𝜐 2 Δ𝑂 0 ∼ 𝑆 π‘ž β‹… 1 βˆ’ 𝜐 1 /𝜐 21 i.e. small-signal gain is proportional to the pump-rate times a reduced upper-level lifetime β€’ Saturation behavior, 1 Δ𝑂 21 = Δ𝑂 0 β‹… 1 + 𝑋 𝑑𝑗𝑕 𝜐 𝑓𝑔𝑔 i.e. the saturation intensity depends only on the signal intensity and the effective lifetime , not on the pumping rate.

  14. Upper-level laser: Transient rate equation As for instance before a Q-switched pulse Assume: No signal ( 𝑋 𝑑𝑗𝑕 = 0 ), fast lower-level relaxation ( 𝑂 1 β‰ˆ 0 ), 𝑒𝑂 2 𝑒 = 𝑆 π‘ž 𝑒 βˆ’ 𝛿 2 𝑂 2 𝑒 𝑒𝑒 The upper level population becomes, 𝑒 𝑆 π‘ž 𝑒 β€² 𝑓 βˆ’π›Ώ 2 (π‘’βˆ’π‘’ β€² ) 𝑒𝑒′ 𝑂 2 𝑒 = βˆ’βˆž Applying a square pulse, π‘ž = 𝑆 π‘ž0 𝜐 2 (1 βˆ’ 𝑓 βˆ’π‘ˆ π‘ž /𝜐 2 ) 𝑂 2 π‘ˆ Define the pump efficiency, = 1 βˆ’ 𝑓 βˆ’π‘ˆ π‘ž /𝜐 2 πœƒ π‘ž = 𝑂 2 𝑒 = π‘ˆ π‘ž 𝑆 π‘ž0 π‘ˆ π‘ˆ π‘ž /𝜐 2 π‘ž ^Pop. In upper lev per pump-photon

  15. 3-level laser: pulses 3-level laser from prev, no signal Assume: No signal ( 𝑋 𝑑𝑗𝑕 = 0 ), Fast upper-level relaxation ( 𝜐 3 β‰ˆ 0 ), 𝑒𝑂 1 𝑒𝑒 = βˆ’ 𝑒𝑂 2 π‘ž 𝑒 𝑂 1 𝑒 + 𝑂 2 𝑒 𝑒𝑒 β‰ˆ βˆ’π‘‹ 𝜐 𝑒 π‘ž 𝑒 + 1 π‘ž 𝑒 βˆ’ 1 𝑒𝑒 Δ𝑂 𝑒 = βˆ’ 𝑋 𝜐 Δ𝑂 𝑒 + 𝑋 𝜐 𝑂 Integrate to get pop. Inv: Square pulse: = (𝑋 π‘ž 𝜐 βˆ’ 1) βˆ’ 2𝑋 π‘ž 𝜐 β‹… exp [βˆ’ 𝑋 π‘ž 𝜐 + 1 𝑒/𝜐] Δ𝑂 𝑒 𝑂 𝑋 π‘ž 𝜐 + 1 If pump pulse duration is short ( π‘ˆ π‘ž β‰ͺ 𝜐 ), and the pumping rate is high ( 𝑋 π‘ž 𝜐 ≫ 1 Simple model-agrees with experiment! Δ𝑂 π‘ˆ π‘ž β‰ˆ 1 βˆ’ 2𝑓 βˆ’π‘‹ π‘ž π‘ˆ π‘ž 𝑂

  16. Summary Steady state laser pumping and population inversion 4-level laser 𝑂 3 βˆ’ 𝑂 2 𝑋 π‘ž 𝜐 𝑠𝑏𝑒 Difference between three β‰ˆ 𝑂 1 + 𝑋 π‘ž 𝜐 𝑠𝑏𝑒 and four-level systems, and 3-level laser why four-level systems are 𝑋 π‘ž 𝜐 𝑠𝑏𝑒 βˆ’ 1 𝑂 2 βˆ’π‘‚ 1 superior β‰ˆ π‘ž 𝜐 𝑠𝑏𝑒 𝑂 1 + 𝑋 Saturation intensity is Laser gain saturation independent of the Upper-level laser, saturation behavior 1 pumping-rate ”i.e. The signal intensity Δ𝑂 21 = Δ𝑂 0 β‹… 1+𝑋 𝑑𝑗𝑕 𝜐 𝑓𝑔𝑔 needed to reduce the pop. Inv. To half its initial value doesn’t depend on the pumping rate” Short pulses are needed to Transient rate equations obtain high pumping Upper-level laser = 1 βˆ’ 𝑓 βˆ’π‘ˆ π‘ž /𝜐 2 πœƒ π‘ž = 𝑂 2 𝑒 = π‘ˆ efficiency π‘ž 𝑆 π‘ž0 π‘ˆ π‘ˆ π‘ž /𝜐 2 π‘ž Three-level laser These simple models give good agreement with Δ𝑂 π‘ˆ π‘ž β‰ˆ 1 βˆ’ 2𝑓 βˆ’π‘‹ π‘ž π‘ˆ π‘ž reality 𝑂

  17. Contents Part II: Laser amplification Wave propagation in atomic media Solve wave-eqs Plane-wave approximation The paraxial wave equation Single-pass laser amplification Gain narrowing Transition cross-sections See effects on the gain Gain saturation Power extraction

  18. Wave propagation in an atomic medium Maxwell’s equations: 𝛼𝑦𝑭 = βˆ’π‘˜πœ•π‘ͺ 𝛼𝑦𝑰 = 𝑲 + π‘˜πœ•π‘¬ Material parameters: Constitutive relations: 𝜈 – magnetic permeability π‘ͺ = πœˆπ‘° 𝜏 – ohmic losses 𝑲 = πœπ‘­ πœ— – dielectric permittivity (not counting 𝑬 = πœ—π‘­ + 𝑸 𝑏𝑒 = πœ— 1 + 𝝍 𝑏𝑒 𝑭 atomic transitions) πœ“ 𝑏𝑒 (πœ•) – resonant susceptibility due Vector field of the form: to laser transitions 𝝑 𝒔, 𝑒 = 1 2 𝑭 𝒔 𝑓 π‘˜πœ•π‘’ + 𝑑. 𝑑 Assume a spatially uniform material ( 𝛼 β‹… 𝐹 = 0 ), and apply 𝛼 Γ— to get the wave equation: 𝑏𝑒 βˆ’ π‘˜πœ 𝛼 2 + πœ• 2 πœˆπœ— 1 + πœ“ 𝑦, 𝑧, 𝑨 = 0 𝐹 πœ•πœ—

  19. Plane-wave approximation <- Ok approx. If Consider a plane wave, wavefront is flat πœ– 2 𝐹 πœ–π‘¦ 2 , πœ– 2 𝐹 πœ–π‘§ 2 β‰ͺ πœ– 2 𝐹 πœ–π‘¨ 2 i.e. 𝛼 2 β†’ 𝑒 2 𝑒𝑨 2 The equation reduces to: 𝑏𝑒 βˆ’ π‘˜πœ 2 + πœ• 2 πœˆπœ— 1 + πœ“ 𝑨 = 0 𝑒 𝑨 𝐹 πœ•πœ—

  20. Plane-wave approximation Without losses: First, no losses 2 + πœ• 2 πœˆπœ— 𝐹 𝑨 = 0, 𝑒 𝑨 Assume solutions on the form: 𝑨 = π‘‘π‘π‘œπ‘‘π‘’ β‹… 𝑓 βˆ’Ξ“π‘¨ 𝐹 β‡’ Ξ“ 2 + πœ• 2 πœˆπœ— 𝐹 = 0 The allowed values for Ξ“ are, Ξ“ = Β±π‘˜πœ• πœˆπœ— ≑ Β±π‘˜π›Ύ With the solution, 𝝑 𝑨, 𝑒 = 1 + 1 2 𝐹 + 𝑓 π‘˜ πœ•π‘’βˆ’π›Ύπ‘¨ + 𝐹 + 2 𝐹 βˆ’ 𝑓 π‘˜ πœ•π‘’+𝛾𝑨 + 𝐹 βˆ’ βˆ— 𝑓 βˆ’π‘˜ πœ•π‘’+𝛾𝑨 βˆ— 𝑓 βˆ’π‘˜ πœ•π‘’βˆ’π›Ύπ‘¨ The free space propagation constant, 𝛾, may be written: 𝛾 = πœ• πœˆπœ— = πœ• 𝑑 = 2𝜌 Different beta πœ‡ from last chapter

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend