round off error analysis of explicit one step numerical
play

Round-off Error Analysis of Explicit One-Step Numerical Integration - PowerPoint PPT Presentation

Round-off Error Analysis of Explicit One-Step Numerical Integration Methods 24th IEEE Symposium on Computer Arithmetic Sylvie Boldo 1 Florian Faissole 1 Alexandre Chapoutot 2 1 Inria - LRI, Univ. Paris-Sud et CNRS - Univ. Paris-Saclay 2 U2IS,


  1. Round-off Error Analysis of Explicit One-Step Numerical Integration Methods 24th IEEE Symposium on Computer Arithmetic ⋆ Sylvie Boldo 1 Florian Faissole 1 Alexandre Chapoutot 2 1 Inria - LRI, Univ. Paris-Sud et CNRS - Univ. Paris-Saclay 2 U2IS, ´ ENSTA ParisTech ⋆ we thank the IEEE for registration bursary

  2. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Table of contents 1 Motivations and numerical methods 2 Roundoff errors of RK methods Local roundoff errors Global roundoff errors of classical methods 3 Conclusion and perspectives 2 / 34

  3. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Ordinary differential equations (ODEs) y ′ ( t ) = f ( y,t ) . Exact resolution is hard ⇒ numerical methods. 3 / 34

  4. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Numerical integration 4 / 34

  5. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Numerical integration 5 / 34

  6. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Numerical integration 6 / 34

  7. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Numerical integration 7 / 34

  8. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Numerical integration 8 / 34

  9. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Numerical integration 9 / 34

  10. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Numerical integration 10 / 34

  11. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Numerical integration 11 / 34

  12. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Euler method k 1 = hf ( t n ,y n ) y n + 1 = y n + k 1 + O ( h 2 ) 12 / 34

  13. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives RK2 method k 1 = h × f ( t n ,y n ) k 2 = h × f ( t n + h 2 ,y n + k 1 2 ) y n + 1 = y n + k 2 + O ( h 3 ) 13 / 34

  14. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Working assumptions • FP arithmetic; • neither underflow nor overflow, u = 2 − 53 • radix 2 double precision, 14 / 34

  15. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Working assumptions • FP arithmetic; • neither underflow nor overflow, u = 2 − 53 • radix 2 double precision, • ODEs; • first-order, y ′ = λy • linear, • y ∶ R → R , 14 / 34

  16. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Working assumptions • FP arithmetic; • neither underflow nor overflow, u = 2 − 53 • radix 2 double precision, • ODEs; • first-order, y ′ = λy • linear, • y ∶ R → R , • Methods. • explicit, • one step, • constant step. 14 / 34

  17. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives RK methods on linear problems: linear stability { y 0 ∈ R y n + 1 = R ( h,λ ) y n ( R polynomial in hλ ) 15 / 34

  18. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives RK methods on linear problems: linear stability { y 0 ∈ R y n + 1 = R ( h,λ ) y n ( R polynomial in hλ ) Stable ⇔ ∣ R ( h,λ )∣ < 1 : 15 / 34

  19. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives RK methods on linear problems: FP implementation { y 0 ∈ R { ̃ y 0 ≃ y 0 R (̃ h, ̃ y n + 1 = ̃ y n + 1 = R ( h,λ ) y n ̃ λ, ̃ y n ) 16 / 34

  20. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives RK methods on linear problems: FP implementation { y 0 ∈ R { ̃ y 0 ≃ y 0 R (̃ h, ̃ y n + 1 = ̃ y n + 1 = R ( h,λ ) y n ̃ λ, ̃ y n ) Euler: • R ( h,λ ) = 1 + hλ ; • ̃ R (̃ h, ̃ y n ⊕ ̃ h ⊗ ̃ λ, ̃ y n ) = ̃ λ ⊗ ̃ y n . 16 / 34

  21. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives RK methods on linear problems: FP implementation { y 0 ∈ R { ̃ y 0 ≃ y 0 R (̃ h, ̃ y n + 1 = ̃ y n + 1 = R ( h,λ ) y n ̃ λ, ̃ y n ) Euler: • R ( h,λ ) = 1 + hλ ; • ̃ R (̃ h, ̃ y n ⊕ ̃ h ⊗ ̃ λ, ̃ y n ) = ̃ λ ⊗ ̃ y n . RK4: 2 ( hλ ) 2 + 1 6 ( hλ ) 3 + 1 • R ( h,λ ) = 1 + hλ + 1 24 ( hλ ) 4 ; • ̃ R (̃ h, ̃ λ, ̃ y n ) = y n ⊕̃ h ⊘ 6 ⊗ ̃ y n ⊕̃ h ⊘ 3 ⊗ ̃ y n ⊕̃ h ⊗̃ h ⊘ 6 ⊗ ̃ λ ⊗ ̃ y n ⊕̃ h ⊘ 3 ⊗ ̃ λ ⊗ ̃ λ ⊗ ̃ λ ⊗ ̃ λ ⊗ ̃ y n ⊗ ̃ ̃ h ⊗ ̃ h ⊘ 6 ⊗ ̃ λ ⊗ ̃ y n ⊕ ̃ h ⊗ ̃ h ⊗ ̃ h ⊘ 12 ⊗ ̃ λ ⊗ ̃ λ ⊗ ̃ y n ⊕ ̃ h ⊘ 6 ⊗ ̃ λ ⊗ ̃ λ ⊗ ̃ λ ⊗ ̃ y n ⊕ ̃ h ⊗ ̃ h ⊘ 6 ⊗ ̃ λ ⊗ ̃ y n ⊕ ̃ h ⊗ ̃ h ⊗ ̃ h ⊘ 12 ⊗ ̃ λ ⊗ ̃ λ ⊗ ̃ λ ⊗ ̃ λ ⊗ ̃ y n ⊕ ̃ h ⊗ ̃ h ⊗ ̃ h ⊗ ̃ h ⊘ 24 ⊗ ̃ λ ⊗ ̃ λ ⊗ ̃ λ ⊗ ̃ λ ⊗ ̃ y n . ( > 60 flops!) 16 / 34

  22. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives State-of-the-art Roundoff errors in numerical methods ( N = nb of iterations): √ • probabilistic result: error in N [Henrici,1963]; • in practice (implicit RK): error in N [Hairer & al, 2008]; • interval analysis [Bouissou-Martel, 2006]; • numerical integration (fine-grained): Newton-Cotes, Gauss-Legendre, ... [Fousse, 2006]. 17 / 34

  23. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives State-of-the-art Roundoff errors in numerical methods ( N = nb of iterations): √ • probabilistic result: error in N [Henrici,1963]; • in practice (implicit RK): error in N [Hairer & al, 2008]; • interval analysis [Bouissou-Martel, 2006]; • numerical integration (fine-grained): Newton-Cotes, Gauss-Legendre, ... [Fousse, 2006]. Our approach: • fined-grained analysis; • use of mathematical properties of the methods (stability). 17 / 34

  24. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Table of contents 1 Motivations and numerical methods 2 Roundoff errors of RK methods Local roundoff errors Global roundoff errors of classical methods 3 Conclusion and perspectives 18 / 34

  25. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Method error vs roundoff error 19 / 34

  26. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Method error vs roundoff error 20 / 34

  27. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Method error vs roundoff error 21 / 34

  28. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Local roundoff error vs global roundoff error Local error: ε 0 = ∣̃ y 0 − y 0 ∣ ∀ n ∈ N ∗ , ε n = ∣ ̃ R (̃ h, ̃ λ, ̃ y n − 1 ) − R ( h,λ ) ̃ y n − 1 ∣ . Global error: ∀ n ∈ N , E n = ̃ y n − y n . 22 / 34

  29. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives From local to global roundoff error Local error: ε 0 = ∣̃ y 0 − y 0 ∣ ∀ n ∈ N ∗ , ε n = ∣ ̃ R (̃ h, ̃ λ, ̃ y n − 1 ) − R ( h,λ ) ̃ y n − 1 ∣ . Global error: ∀ n ∈ N , E n = ̃ y n − y n . Theorem 1: Global absolute error of RK methods Let C ∈ R ∗ + . Suppose ∀ n ∈ N ∗ ,ε n ⩽ C ∣ ̃ y n − 1 ∣ . Then, ∀ n ∈ N , C ∣ y 0 ∣ ∣ E n ∣ ⩽ ( C + ∣ R ( h,λ )∣) n ( ε 0 + n C + ∣ R ( h,λ )∣) . 23 / 34

  30. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Relative roundoff errors Relative error: ∣ ̃ y n − y n ∣ ⩽ ( C + ∣ R ( h,λ )∣ C ∣ y 0 ∣ n ) ( ε 0 + n C + ∣ R ( h,λ )∣) . ∣ R ( h,λ )∣ y n 24 / 34

  31. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Relative roundoff errors Relative error: ∣ ̃ y n − y n ∣ ⩽ ( C + ∣ R ( h,λ )∣ C ∣ y 0 ∣ n ) ( ε 0 + n C + ∣ R ( h,λ )∣) . ∣ R ( h,λ )∣ y n If C ≪ ∣ R ( h,λ )∣ , then: ∣ ̃ y n − y n C ∣ y 0 ∣ ∣ ≲ ε 0 + n ∣ R ( h,λ )∣ . y n In practice (Euler, RK2, RK4): C ≤ 200 u and 200 u ≪ ∣ R ( h,λ )∣ . 24 / 34

  32. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Table of contents 1 Motivations and numerical methods 2 Roundoff errors of RK methods Local roundoff errors Global roundoff errors of classical methods 3 Conclusion and perspectives 25 / 34

  33. Motivations and numerical methods Roundoff errors of RK methods Conclusion and perspectives Technical lemma for local roundoff errors Local error of stable Euler’s method ( − 2 ≤ hλ < 0 ): y n ⊕ (̃ h ⊗ ̃ ε n + 1 = ∣ ̃ λ ⊗ ̃ y n ) − ( 1 + hλ ) y n ∣ . 26 / 34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend