review wavelets in a nutshell
play

Review: Wavelets in a Nutshell Three Wavelet Examples Varied - PowerPoint PPT Presentation

Discrete Wavelet Transforms Industrial-Strength, Technology-Enabling Computing (look, listen, read) Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Pez, & Bordeianu with Support


  1. Discrete Wavelet Transforms ⊙ Industrial-Strength, Technology-Enabling Computing (look, listen, read) Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu with Support from the National Science Foundation Course: Computational Physics II 1 / 1

  2. 0.5 t 2 0 –2 –4 –6 1.0 t 0.0 –0.5 –1.0 ψ 4 6 0 –4 1.0 0.0 4 t 0 –4 1.0 0.0 –1.0 4 Review: Wavelets in a Nutshell Three Wavelet Examples Varied functional forms Wavelets = packets Vary scale & center Nonstationary signals Finite ∆ τ ∆ ω Basis functions ∆ τ ∆ ω ≥ 2 π All oscillate 2 / 1

  3. Problem: Determine ≤ N Indep Wavelet TFs Y i , j The Discrete Wavelet Transform (DWT) � + ∞ Y ( s , τ ) = dt ψ ∗ s ,τ ( t ) y ( t ) (Wavelet Transform) −∞ Given: N signal measurements: y ( t m ) ≡ y m , m = 1 , . . . , N Compute no more DWTs than needed Hint: Lossless: consistent with uncertainty principle Hint: Lossy: consistent with required resolution 3 / 1

  4. How to Discretize DWT? Auto Scalings, Translations = ♥ Wavelets Discrete scaling s , discrete time translation τ : τ = k s = 2 j , k , j = 0 , 1 , . . . (Dyadic Grid) (1) 2 j , � t − k 2 j � ψ j , k ( t ) = 1 2 j Ψ (Wavelets T = 1) (2) √ 2 j � + ∞ Y j , k = dt ψ j , k ( t ) y ( t ) (3) −∞ � ψ j , k ( t m ) y ( t m ) h (DWT) (4) ≃ m 4 / 1

  5. Time Frequency Time & Frequency Sampling Sample y ( t ) in Time & Frequency Ranges High ω ↑ range Uncertainty Prin: ∆ ω ∆ t ≥ 2 π High ω for details Don’t be wasteful! Few low ω for shape ⇒ H × W = Const Each t , ∆ scales 5 / 1

  6. Multi Resolution Analysis (MRA) Digital Wavelet Transform ≡ Filter 2 2 L LL 2 L 2 2 H LH D a t a I n p u t 2 2 H H Filter: ∆ relative ω strengths ≡ analyze ∆ scale: MRA Sample → Filter → Sample · · · � + ∞ g ( t ) = d τ h ( t − τ ) y ( τ ) (Filter) −∞ � t − τ � + ∞ � � dt Ψ ∗ Y ( s , τ ) = y ( t ) ≃ w i ψ i y ( t i ) (Transform) s −∞ w i = integration weight + wavelet values = “filter coeff” 6 / 1

  7. MRA via Filter Tree (Pyramid Algorithm) Filtering with Decimation 2 2 L LL 2 L 2 2 H L H Data Input 2 2 H H H: highpass filters Factor-of-2 “decimation” L: lowpass filters "Subsampling" Ea filter: lowers scale Keeps area constant ↓ 2: rm 1/2 signal Need little large-s info 7 / 1

  8. Example from Appendix High → Medium → Low Resolution 8 / 1

  9. Summary Pyramid DWT algorithm compresses data, separates hi res Smooth info in low- ω (large s ) components Detailed info in high- ω (small s ) components High-res reproduction: more info on details than shape Different resolution components = independent ⇒ Lower data storage Rapid reproduction/inversion (JPEG2) 9 / 1

  10. (2) Coefficients Input (3) (n) Coefficients Coefficients Coefficients Coefficients Coefficients (n) Coefficients Coefficients L L L L H H (1) (3) H 2 N Samples N/2 N/4 N/8 2 N/2 N/4 N/8 c (2) c c c d d d d (1) H Pyramid Algorithm Graphically (see text) L & H via matrix mult (TFs) Downsample: ↓ #, ∆ scale Decimated H output saved Ends with 2 H , L points 10 / 1

  11. N = 8 Example Matrices s ( 1 ) s ( 1 ) s ( 2 ) s ( 2 )         1 1 1 1 y 1   d ( 1 ) s ( 1 ) d ( 2 ) s ( 2 )         y 2         1 2 1 2             s ( 1 ) s ( 1 ) s ( 2 ) d ( 2 )          y 3          2 3 2 1             d ( 1 ) s ( 1 ) d ( 2 ) d ( 2 ) y 4         filter order filter order   2 4 2 2         − → − → − → − →           s ( 1 ) d ( 1 ) d ( 1 ) d ( 1 )  y 5            3 1 1 1                   y 6 d ( 1 ) d ( 1 ) d ( 1 ) d ( 1 )             3 2 2 2          y 7   s ( 1 )   d ( 1 )   d ( 1 )   d ( 1 )            4 3 3 3         y 8 d ( 1 ) d ( 1 ) d ( 1 ) d ( 1 ) 4 4 4 4 11 / 1

  12. Pyramid Algorithm Matrices Pyramid Algorithm Successive Operations Mult N -D vector of Y by c matrix 1 (See text for c i derivation) 2 Y 0 c 0 c 1 c 2 c 3 y 0       Y 1 c 3 − c 2 c 1 − c 0 y 1        =             Y 2 c 2 c 3 c 0 c 1 y 2      Y 3 c 1 − c 0 c 3 − c 2 y 3 Mult ( N / 2 ) -D smooth vector by c matrix 3 Reorder: new 2 smooth on top, new detailed, older detailed 4 Repeat until only 2 smooth remain 5 12 / 1

  13. Inversion Y → y Using transpose (inverse) of transfer matrix at each stage y 0 c 0 c 3 c 2 c 1 Y 0       y 1 c 1 − c 2 c 3 − c 0 Y 1        =  .        y 2   c 2 c 1 c 0 c 3   Y 2      y 3 c 3 − c 0 c 1 − c 2 Y 3 13 / 1

  14. Chirp Example Graphical 1024 sin ( 60 t 2 ) 1024 thru H & L Downsample → 512 L , 512 H Save details Each step ↓ 2 × Connected dots End: 2 ↓ detail 14 / 1

  15. –0.06 –0.02 0.02 0.06 0.1 0 400 800 1200 –0.1 Daubechies Daub4 Wavelet (Derivation in Text) √ √ c 0 = 1 + 3 c 1 = 3 + 3 √ , √ 4 2 4 2 √ √ c 2 = 3 − 3 c 3 = 1 − 3 √ , √ 4 2 4 2 15 / 1

  16. Summary: Wavelet Transforms Continuous → Discrete → Pyramid Algorithm � + ∞ Y ( s , τ ) = dt ψ ∗ s ,τ ( t ) y ( t ) −∞ � → � Discrete: measurements, i Transform → digital filter → coefficients Multiple scales → series H & L filters Compression: N independent components Further compression: Variable resolution 16 / 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend