Model of motion-sensing retinal receptive fields Jonathan Schmok, Bochao Li, Yihan Zi Special thanks to Jun Wang
The Retina - Directionally Sensitive(DS) Cells Why this project? Study of information coding in retina output firing pattern
Reichardt-Hassenstein Model
RH Model with Neurons SYNAPSE MODEL NEURON MODEL Gap Junctions Leaky-Passive Neurons Chemical Synapse Hodgkin-Huxley Neuron
The Network rod 0 rod 1 π neuron π neuron arithmetic arithmetic neuron neuron output neuron
Input Time Rod 0 Rod 1 Rod 0 Rod 1
Rods Model: Leaky Passive Neurons ππ€ ππ’ = π½ ππ¦π’ β π π β π β πΉ π π· π Parameter Value Capacitance 10 uF/cm^2 Leak Conductance 0.3 mS/cm^2 Resting Potential 0 mV Input:
π Neurons Model: Leaky Passive Neurons ππ’ = π½ πππ β π π β π β πΉ π ππ€ π· π Parameter Value Capacitance 250 uF/cm^2 Leak Conductance 0.3 mS/cm^2 Resting Potential 0 mV Input: β’ Time delay from large capacitance β’ Representing high surface area starburst amacrine cells
Arithmetic Neurons Model: Leaky Passive Neurons ππ’ = (π½ πππ1 β π½ πππ2 ) β π π β π β πΉ π ππ€ π· π Parameter Value Capacitance 10 uF/cm^2 Leak Conductance 0.3 mS/cm^2 Resting Potential 0 mV β’ Gap junction from input and tau neurons β’ Multiplication in neurons active area of research
Output Neuron Model: Hodgkin-Huxley Neuron ππ’ = π π β πΉ π β π + π½ πΉπ¦πππ’ππ’ππ π§ β π½ π½πβππππ’ππ π§ β π ππ π 3 β π β πΉ ππ β π πΏ π 4 π β πΉ πΏ ππ€ π· π β’ Parameter Value Excitatory synapse from left arithmetic unit and inhibitory synapse from right Capacitance 10 uF/cm^2 arithmetic unit define preferred and null π π 0.3 ms/cm^2 direction πΉ π -65 mV π ππ 100 mS/cm^2 β’ πΉ π determined manually for optimal π πΏ 30 mS/cm^2 discrimination β other parameters from πΉ ππ 40 mV physiological measurements πΉ πΏ -90 mV
Reichardt-Hassenstain model outputs of DS cells Null Direction Preferred Direction
Neural RH model of DS cells Null Direction Preferred Direction β’ DS cells fire at their preferred direction and depolarize at null direction β’ Firing rate slowing down match natural neurons response stronger at the edge of signal
Model analysis- input amplitude contrast Period=500 0.2 0.18 0.16 0.14 Spke interval 0.12 0.1 0.08 0.06 0.04 0.02 0 0.3 0.5 1 2.5 5 7.5 10 12.5 15 input contrast
Model analysis- velocity Period=500 Period=200 0.2 0.09 0.18 0.08 0.16 0.07 0.14 Spke interval 0.06 Spike interval 0.12 0.05 0.1 0.04 0.08 0.03 0.06 0.04 0.02 0.02 0.01 0 0 0.3 0.5 1 2.5 5 7.5 10 12.5 15 0.3 0.5 1 2.5 5 7.5 10 12.5 15 input contrast input contrast Period=50 0.06 Contrast for Spike 0.05 0.04 SPike interval 0.03 Spike interval responds to velocity 0.02 0.01 0 0.3 0.5 1 2.5 5 7.5 10 12.5 15 input contrast
Future Studies β¦ How do neurons perform multiplication? β¦ Design a model that is directionally sensitive in 2+ dimensions β¦ Retina inspired computer vision β¦ More complex neuronal models with spatial geometry
Recommend
More recommend