retinal receptive fields

retinal receptive fields Jonathan Schmok, Bochao Li, Yihan Zi - PowerPoint PPT Presentation

Model of motion-sensing retinal receptive fields Jonathan Schmok, Bochao Li, Yihan Zi Special thanks to Jun Wang The Retina - Directionally Sensitive(DS) Cells Why this project? Study of information coding in retina output firing pattern


  1. Model of motion-sensing retinal receptive fields Jonathan Schmok, Bochao Li, Yihan Zi Special thanks to Jun Wang

  2. The Retina - Directionally Sensitive(DS) Cells Why this project? Study of information coding in retina output firing pattern

  3. Reichardt-Hassenstein Model

  4. RH Model with Neurons SYNAPSE MODEL NEURON MODEL Gap Junctions Leaky-Passive Neurons Chemical Synapse Hodgkin-Huxley Neuron

  5. The Network rod 0 rod 1 𝜐 neuron 𝜐 neuron arithmetic arithmetic neuron neuron output neuron

  6. Input Time Rod 0 Rod 1 Rod 0 Rod 1

  7. Rods Model: Leaky Passive Neurons 𝑒𝑀 𝑒𝑒 = 𝐽 𝑓𝑦𝑒 βˆ’ 𝑕 𝑀 βˆ— π‘Š βˆ’ 𝐹 𝑆 𝐷 𝑛 Parameter Value Capacitance 10 uF/cm^2 Leak Conductance 0.3 mS/cm^2 Resting Potential 0 mV Input:

  8. 𝜐 Neurons Model: Leaky Passive Neurons 𝑒𝑒 = 𝐽 π‘•π‘π‘ž βˆ’ 𝑕 𝑀 βˆ— π‘Š βˆ’ 𝐹 𝑆 𝑒𝑀 𝐷 𝑛 Parameter Value Capacitance 250 uF/cm^2 Leak Conductance 0.3 mS/cm^2 Resting Potential 0 mV Input: β€’ Time delay from large capacitance β€’ Representing high surface area starburst amacrine cells

  9. Arithmetic Neurons Model: Leaky Passive Neurons 𝑒𝑒 = (𝐽 π‘•π‘π‘ž1 βˆ— 𝐽 π‘•π‘π‘ž2 ) βˆ’ 𝑕 𝑀 βˆ— π‘Š βˆ’ 𝐹 𝑆 𝑒𝑀 𝐷 𝑛 Parameter Value Capacitance 10 uF/cm^2 Leak Conductance 0.3 mS/cm^2 Resting Potential 0 mV β€’ Gap junction from input and tau neurons β€’ Multiplication in neurons active area of research

  10. Output Neuron Model: Hodgkin-Huxley Neuron 𝑒𝑒 = 𝑕 𝑀 βˆ— 𝐹 𝑀 βˆ’ π‘Š + 𝐽 𝐹𝑦𝑑𝑗𝑒𝑏𝑒𝑝𝑠𝑧 βˆ’ 𝐽 π½π‘œβ„Žπ‘—π‘π‘—π‘’π‘π‘ π‘§ βˆ’ 𝑕 𝑂𝑏 𝑛 3 β„Ž π‘Š βˆ’ 𝐹 𝑂𝑏 βˆ’ 𝑕 𝐿 π‘œ 4 π‘Š βˆ’ 𝐹 𝐿 𝑒𝑀 𝐷 𝑛 β€’ Parameter Value Excitatory synapse from left arithmetic unit and inhibitory synapse from right Capacitance 10 uF/cm^2 arithmetic unit define preferred and null 𝑕 𝑀 0.3 ms/cm^2 direction 𝐹 𝑀 -65 mV 𝑕 𝑂𝑏 100 mS/cm^2 β€’ 𝐹 𝑀 determined manually for optimal 𝑕 𝐿 30 mS/cm^2 discrimination – other parameters from 𝐹 𝑂𝑏 40 mV physiological measurements 𝐹 𝐿 -90 mV

  11. Reichardt-Hassenstain model outputs of DS cells Null Direction Preferred Direction

  12. Neural RH model of DS cells Null Direction Preferred Direction β€’ DS cells fire at their preferred direction and depolarize at null direction β€’ Firing rate slowing down match natural neurons response stronger at the edge of signal

  13. Model analysis- input amplitude contrast Period=500 0.2 0.18 0.16 0.14 Spke interval 0.12 0.1 0.08 0.06 0.04 0.02 0 0.3 0.5 1 2.5 5 7.5 10 12.5 15 input contrast

  14. Model analysis- velocity Period=500 Period=200 0.2 0.09 0.18 0.08 0.16 0.07 0.14 Spke interval 0.06 Spike interval 0.12 0.05 0.1 0.04 0.08 0.03 0.06 0.04 0.02 0.02 0.01 0 0 0.3 0.5 1 2.5 5 7.5 10 12.5 15 0.3 0.5 1 2.5 5 7.5 10 12.5 15 input contrast input contrast Period=50 0.06 Contrast for Spike 0.05 0.04 SPike interval 0.03 Spike interval responds to velocity 0.02 0.01 0 0.3 0.5 1 2.5 5 7.5 10 12.5 15 input contrast

  15. Future Studies β—¦ How do neurons perform multiplication? β—¦ Design a model that is directionally sensitive in 2+ dimensions β—¦ Retina inspired computer vision β—¦ More complex neuronal models with spatial geometry

Recommend


More recommend