resolvability of the multiple access channel with two
play

Resolvability of the Multiple Access Channel with Two-Sided - PowerPoint PPT Presentation

Introduction Noiseless Cooperation Cooperation over Noisy Channel Resolvability of the Multiple Access Channel with Two-Sided Cooperation N. Helal 1 , M. Bloch 2 and A. Nosratinia 1 1 University of Texas at Dallas 2 Georgia Institute of


  1. Introduction Noiseless Cooperation Cooperation over Noisy Channel Resolvability of the Multiple Access Channel with Two-Sided Cooperation N. Helal 1 , M. Bloch 2 and A. Nosratinia 1 1 University of Texas at Dallas 2 Georgia Institute of Technology N. Helal, M. Bloch and A. Nosratinia 1 / 22

  2. Introduction Noiseless Cooperation Cooperation over Noisy Channel Introduction 1 Channel Resolvability Channel Resolvability in Information Theory Multi-user Channel Resolvability Noiseless Cooperation 2 The MAC with a common message The MAC with conferencing Cooperation over Noisy Channel 3 The MAC with Feedback The MAC with Generalized Feedback N. Helal, M. Bloch and A. Nosratinia 1 / 22

  3. Introduction Noiseless Cooperation Cooperation over Noisy Channel Introduction N. Helal, M. Bloch and A. Nosratinia 2 / 22

  4. Introduction Noiseless Cooperation Cooperation over Noisy Channel Channel Resolvability Approximation of output statistics Given i.i.d. Q X generating i.i.d. Q Z at the output of a DMC W Z | X Attempt to simulate same output statistics using codebook of rate R Goal: find the minimum R such that lim n →∞ � ( P Z n || Q ⊗ n Z ) = 0 � � � � � ⊗ � ∼ � � � � � | � � � � ∼ = � � � ( � ) Enc 2 �� � � � � | � � � � � ∈ [1, ] ∼ Channel resolvability [Wyner 75, Han-Verdú 93, Cuff 09, Hou-Kramer 13]: � � n →∞ � ( P Z n || Q ⊗ n inf R : � code of rate R s.t. lim Z ) = 0 min I ( X ; Z ) = P X W Z | X :marginal Q Z N. Helal, M. Bloch and A. Nosratinia 3 / 22

  5. Introduction Noiseless Cooperation Cooperation over Noisy Channel Channel Resolvability in Information Theory Strong secrecy - from resolvability [Hayashi 06, Bloch 13] Approximating output statistics - non-cooperating encoders [Yassaee 10, Common information - resolvability [Wyner 75, Han 93] Goldfeld 17, Wang 18] [Wyner 75] - MAC resolvability [Steinberg 98] - state information [Han 19] 1975 1995 2005 1985 2015 Stealth and covertness Source coding Rate distortion [Steinberg 94] [Steinberg 96, Liu 15] [Hou-Kramer 13, Wang et al. 16, Bloch'16] Strong coordination [Cuff 10] Strong and semantic secrecy follow naturally Secrecy proofs conceptually clean Strong secrecy in multi-user network with cooperating encoders!! N. Helal, M. Bloch and A. Nosratinia 4 / 22

  6. Enc 1 Introduction Noiseless Cooperation Cooperation over Noisy Channel Enc 2 Multi-user Channel Resolvability ⊲ MAC with non-cooperating encoders [Steinberg 98, Frey et al. 17]  R 1 ≥ I ( X 1 ; Z | Q )  Enc 1   �     ( R 1 , R 2 ) : R 2 ≥ I ( X 2 ; Z | Q ) R =    R 1 + R 2 ≥ I ( X 1 , X 2 ; Z | Q )  P QX 1 X 2 Z ∈P   Enc 2 P = { P Q P X 1 | Q P X 2 | Q W Z | X 1 X 2 : marginal Q Z } ⊲ MAC with cribbing [Helal et al. 18]  R 1 ≥ I ( X 1 ; Z )    � Enc 1     ( R 1 , R 2 ) : R 2 ≥ I ( X 1 X 2 ; Z ) − H ( X 1 ) R =     R 1 + R 2 ≥ I ( X 1 , X 2 ; Z ) P X 1 X 2 Z ∈P delay delay   P = { P X 1 X 2 W Z | X 1 X 2 : marginal Q Z } Enc 2 for causal cribbing ⊲ Relay channel [Helal et al. 19] N. Helal, M. Bloch and A. Nosratinia 5 / 22

  7. Introduction Noiseless Cooperation Cooperation over Noisy Channel Noiseless Cooperation N. Helal, M. Bloch and A. Nosratinia 6 / 22

  8. Introduction Noiseless Cooperation Cooperation over Noisy Channel The MAC with a common message Enc 1 Enc 2 f 1 : M 0 × M 1 → X n f 2 : M 0 × M 2 → X n and 1 2 Theorem R 0 ≥ I ( U ; Z ) R 0 + R 1 ≥ I ( U , X 1 ; Z ) R 0 + R 2 ≥ I ( U , X 2 ; Z ) R 0 + R 1 + R 2 ≥ I ( X 1 , X 2 ; Z ) P U P X 1 | U P X 2 | U W Z | X 1 , X 2 N. Helal, M. Bloch and A. Nosratinia 7 / 22

  9. Introduction Noiseless Cooperation Cooperation over Noisy Channel The MAC with conferencing Enc 1 Enc 2 g 1 k : M 1 × V k − 1 g 2 k : M 2 × V k − 1 and → V → V 1 k 2 k 2 1 f 1 : M 1 × V K 2 → X n f 2 : M 2 × V K 1 → X n and 1 2 K K � � log |V 1 k | ≤ nC 12 and log |V 2 k | ≤ nC 21 k = 1 k = 1 Theorem C 12 + C 21 ≥ I ( U ; Z ) R 1 ≥ I ( U , X 1 ; Z ) − C 21 R 2 ≥ I ( U , X 2 ; Z ) − C 12 R 1 + R 2 ≥ I ( X 1 , X 2 ; Z ) P U P X 1 | U P X 2 | U W Y , Z | X 1 , X 2 N. Helal, M. Bloch and A. Nosratinia 8 / 22

  10. Introduction Noiseless Cooperation Cooperation over Noisy Channel Cooperation over Noisy Channel N. Helal, M. Bloch and A. Nosratinia 9 / 22

  11. Introduction Noiseless Cooperation Cooperation over Noisy Channel The MAC with Feedback delay Enc 1 Enc 2 delay f 1 i : M 1 × Z i − 1 → X 1 i f 2 i : M 2 × Z i − 1 → X 2 i and Theorem R 1 ≥ I ( X 1 ; Z | U ) R 2 ≥ I ( X 2 ; Z | U ) R 1 + R 2 ≥ I ( X 1 , X 2 ; Z | U ) P U P X 1 | U P X 2 | U W Z | X 1 , X 2 Feedback does not improve resolvability of MAC! N. Helal, M. Bloch and A. Nosratinia 10 / 22

  12. Introduction Noiseless Cooperation Cooperation over Noisy Channel The MAC with Generalized Feedback delay Enc 1 Enc 2 delay f 1 i : M 1 × Z i − 1 f 2 i : M 2 × Z i − 1 and → X 1 i → X 2 i 1 2 N. Helal, M. Bloch and A. Nosratinia 11 / 22

  13. Introduction Noiseless Cooperation Cooperation over Noisy Channel The MAC with Generalized Feedback (Decode-and-Forward) Proposition (achievability) R 1 ≥ I ( X 1 , X 2 ; Z ) − I ( X 2 ; Z 1 | X 1 , U ) R 2 ≥ I ( X 1 , X 2 ; Z ) − I ( X 1 ; Z 2 | X 2 , U ) R 1 + R 2 ≥ I ( X 1 , X 2 ; Z ) I ( X 1 ; Z 2 | X 2 , U ) + I ( X 2 ; Z 1 | X 1 , U ) > I ( X 1 , X 2 ; Z ) P U P X 1 | U P X 2 | U W Z 1 , Z 2 , Z | X 1 , X 2 Proof Outline: Block-Markov encoding to handle strict causality constraint. Break the dependence between blocks created by the block-Markov encoding. Careful recycling of randomness via wiretap coding between Encoder 1 and Encoder 2. N. Helal, M. Bloch and A. Nosratinia 12 / 22

  14. Introduction Noiseless Cooperation Cooperation over Noisy Channel The MAC with Generalized Feedback (Decode-and-Forward) Proof Outline: Block-Markov encoding to handle strict causality constraint. Break the dependence between blocks created by the block-Markov encoding. Careful recycling of randomness via wiretap coding between Encoder 1 and Encoder 2. Transmit over B blocks.  � v 1 � 0 � � � ( � ) ( ) 0 � ′ � ″ 1 1 1 � ( � ) � ′ ( � ) � ″ ( � ) � � ( , , ) 0 1 1 � � � ′ � ″ 2 2 2 � ( � ) � ′ ( � ) � ″ ( � ) � � ( , , ) 0 2 2  � 2 N. Helal, M. Bloch and A. Nosratinia 13 / 22

  15. Introduction Noiseless Cooperation Cooperation over Noisy Channel The MAC with Generalized Feedback (Decode-and-Forward) Proof Outline: Block-Markov encoding to handle strict causality constraint. Break the dependence between blocks created by the block-Markov encoding. Careful recycling of randomness via wiretap coding between Encoder 1 and Encoder 2. User 1 User 2 � ′ � ″ � ′ � ″ � 0 � 0 1 1 2 2 Block � � ″ � ″ � ( + − � 0 ) � 0 1 2 � ″ � ″ (1 − � )( + − � 0 ) 1 2 Block � + 1 � ′ � ″ � ′ � ″ � 0 1 � 0 1 2 2 � ′ � ″ � ″ � ″ � ′ � ″ � ″ � ″ � 1 = + − � ( + − � 0 ) � 2 = + − (1 − � )( + − � 0 ) 1 1 1 2 2 2 1 2 N. Helal, M. Bloch and A. Nosratinia 14 / 22

  16. Introduction Noiseless Cooperation Cooperation over Noisy Channel The MAC with Generalized Feedback (Decode-and-Forward) Proof Outline: Block-Markov encoding to handle strict causality constraint. Break the dependence between blocks created by the block-Markov encoding. Careful recycling of randomness via wiretap coding between Encoder 1 and Encoder 2. B � � ( P Z n || Q ⊗ n Q ⊗ r Z ) ≤ 2 � ( P M ′′( b ) b || P M ′′( b ) P M ′′( b ) Z ) M ′′( b ) Z r 1 2 1 2 b = 1 � � 2 H ( P ( b ) e ) + P ( b ) + B e r ( ρ ′′ 1 + ρ ′′ 2 ) � ����������������������������� �� ����������������������������� � P ( b ) e is the average error probability of decoding over the wiretap channel N. Helal, M. Bloch and A. Nosratinia 15 / 22

  17. Introduction Noiseless Cooperation Cooperation over Noisy Channel The MAC with Generalized Feedback (Decode-and-Forward) Proof Outline: Block-Markov encoding to handle strict causality constraint. Break the dependence between blocks created by the block-Markov encoding. Careful recycling of randomness via wiretap coding between Encoder 1 and Encoder 2. delay delay � ′ 1 � ″ , � 1 � � ′ 1 � ″ Enc1 1 Enc1 � 1 � , 1 ̂ ″ � 2 � � � 1 � 2 , , � | � 1 � 2 � � 1 � 2 , , � | � 1 � 2 � ̂ ″ � 2 � Enc2 � Enc2 � 2 � 1 � ′ 2 � ″ , � ″ 1 � ″ 2 � ′ 2 � ″ , , 2 2 delay delay N. Helal, M. Bloch and A. Nosratinia 16 / 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend