optimum source resolvability rate with respect to f
play

Optimum Source Resolvability Rate with Respect to f -Divergences - PowerPoint PPT Presentation

Optimum Source Resolvability Rate with Respect to f -Divergences Using the Smooth Rnyi Entropy Ryo Nomura (Waseda University, Japan) Hideki Yagi (The Universtiy of Electro-Communications, Japan) ISIT2020, June 21-26, 2020 Outline


  1. Optimum Source Resolvability Rate with Respect to f -Divergences Using the Smooth Rényi Entropy Ryo Nomura (Waseda University, Japan) Hideki Yagi (The Universtiy of Electro-Communications, Japan) ISIT2020, June 21-26, 2020

  2. Outline • Preliminaries 1. Source resolvability 2. f -divergence 3. Smooth Rényi entropy • Main results (Optimum D -achievable resolvability rate ) • Specifjcations • Conclusion 1

  3. Preliminaries

  4. 1. Preliminaries We focus on the source resolvability problem. Given an arbitrary target source, we approximate it by using a discrete random variable which is uniformly distributed. Mapping φ : U M := { 1 , 2 , . . . , M } → X Uniform Random Number Given Target Source i P ( i ) φ x P ( x ) 1 1 /M → 1 1 / 3 2 1 /M X : 2 1 / 8 U M : 3 1 /M 3 1 / 9 · · · · · · · · · · · · M 1 /M 2

  5. 1. Preliminaries We focus on the source resolvability problem. Given an arbitrary target source, we approximate it by using a discrete random variable which is uniformly distributed. Mapping φ : U M := { 1 , 2 , . . . , M } → X Uniform Random Number Given Target Source i P ( i ) φ x P ( x ) 1 1 /M → 1 1 / 3 2 1 /M X : 2 1 / 8 U M : 3 1 /M 3 1 / 9 · · · · · · · · · · · · M 1 /M 2

  6. 1. Preliminaries • Distance d ( φ ( U M ) , X ) : requested to be small • Size M (rate: log M ): requested to be small 3

  7. 1. Preliminaries • Distance d ( φ ( U M ) , X ) : requested to be small • Size M (rate: log M ): requested to be small 3

  8. 1. Preliminaries • Distance d ( φ ( U M ) , X ) : requested to be small ( ≤ D ) • Size M (rate: log M ): requested to be as small as possible 4

  9. 1. Preliminaries Table 1: Previous results Approximation measure (or distance) Variational distance KL-divergence f -divergence Han & Verdú, ’93 Information Steinberg & Verdú, ’96 Nomura, Steinberg & Verdú, ’96 Spectrum Nomura, ’18 ISIT’19 Yagi & Han, ’17 Rényi Uyematsu, ’10 Entropy 5

  10. 1. Preliminaries Table 2: Previous results Approximation measure (or distance) Variational distance KL-divergence f -divergence Han & Verdú, ’93 Information Steinberg & Verdú, ’96 Nomura, Steinberg & Verdú, ’96 Spectrum Nomura, ’18 ISIT’19 Yagi & Han, ’17 Rényi Uyematsu, ’10 This study Entropy 6

  11. 1. Preliminaries Notation • X = { X n } ∞ n =1 : general source with values in countable sets X n . • P X n : probability distribution of X n • U M : random variable uniformly distributed on U M := { 1 , 2 , · · · , M } , P U M ( i ) = 1 M , 1 ≤ i ≤ M Assumption: � � � 1 � � 1 � H ( X ) := sup R � lim n →∞ Pr n log P X n ( X n ) ≥ R = 1 < + ∞ � 7

  12. 1. Preliminaries Notation • X = { X n } ∞ n =1 : general source with values in countable sets X n . • P X n : probability distribution of X n • U M : random variable uniformly distributed on U M := { 1 , 2 , · · · , M } , P U M ( i ) = 1 M , 1 ≤ i ≤ M Assumption: � � � 1 � � 1 � H ( X ) := sup R � lim n →∞ Pr n log P X n ( X n ) ≥ R = 1 < + ∞ � 7

  13. 1. Preliminaries We defjne a class of f -divergences between P Z and P Z . Let f ( t ) be a convex function defjned for t > 0 and f (1) = 0 . Defjnition ([Csiszár and Shields, ’04]) Let P Z and P Z denote probability distributions over a fjnite set Z . The f -divergence between P Z and P Z is defjned by � P Z ( z ) � � D f ( Z || Z ) := P Z ( z ) f , P Z ( z ) z ∈Z � 0 where we set 0 f = 0 , f (0) = lim t → 0 f ( t ) , 0 f ( a f ( u ) u . � 0 ) = a lim u →∞ 0 We next give some examples of f -divergences. 8

  14. 1. Preliminaries We defjne a class of f -divergences between P Z and P Z . Let f ( t ) be a convex function defjned for t > 0 and f (1) = 0 . Defjnition ([Csiszár and Shields, ’04]) Let P Z and P Z denote probability distributions over a fjnite set Z . The f -divergence between P Z and P Z is defjned by � P Z ( z ) � � D f ( Z || Z ) := P Z ( z ) f , P Z ( z ) z ∈Z � 0 where we set 0 f = 0 , f (0) = lim t → 0 f ( t ) , 0 f ( a f ( u ) u . � 0 ) = a lim u →∞ 0 We next give some examples of f -divergences. 8

  15. 1. Preliminaries We defjne a class of f -divergences between P Z and P Z . Let f ( t ) be a convex function defjned for t > 0 and f (1) = 0 . Defjnition ([Csiszár and Shields, ’04]) Let P Z and P Z denote probability distributions over a fjnite set Z . The f -divergence between P Z and P Z is defjned by � P Z ( z ) � � D f ( Z || Z ) := P Z ( z ) f , P Z ( z ) z ∈Z � 0 where we set 0 f = 0 , f (0) = lim t → 0 f ( t ) , 0 f ( a f ( u ) u . � 0 ) = a lim u →∞ 0 We next give some examples of f -divergences. 8

  16. 1. Preliminaries We defjne a class of f -divergences between P Z and P Z . Let f ( t ) be a convex function defjned for t > 0 and f (1) = 0 . Defjnition ([Csiszár and Shields, ’04]) Let P Z and P Z denote probability distributions over a fjnite set Z . The f -divergence between P Z and P Z is defjned by � P Z ( z ) � � D f ( Z || Z ) := P Z ( z ) f , P Z ( z ) z ∈Z � 0 where we set 0 f = 0 , f (0) = lim t → 0 f ( t ) , 0 f ( a f ( u ) u . � 0 ) = a lim u →∞ 0 We next give some examples of f -divergences. 8

  17. 1. Preliminaries Defjnition � P Z ( z ) � � D f ( Z || Z ) := P Z ( z ) f P Z ( z ) z ∈Z Examples [Csiszár and Shields, ’04][Sason and Verdú, ’16] • f ( t ) = t log t : (KL divergence) P Z ( z ) log P Z ( z ) � D f ( Z || Z ) = P Z ( z ) =: D ( Z || Z ) . z ∈Z • f ( t ) = − log t : (Reverse KL divergence) P Z ( z ) log P Z ( z ) � D f ( Z || Z ) = P Z ( z ) = D ( Z || Z ) . 9 z ∈Z

  18. 1. Preliminaries Defjnition � P Z ( z ) � � D f ( Z || Z ) := P Z ( z ) f . P Z ( z ) z ∈Z Examples [Csiszár and Shields, ’04][Sason and Verdú, ’16] √ • f ( t ) = 1 − t : (Hellinger distance) � � D f ( Z || Z ) = 1 − P Z ( z ) P Z ( z ) . z ∈Z • f ( t ) = ( t − 1) + = (1 − t ) + := max { 1 − t, 0 } : (Variational distance) D f ( Z || Z ) = 1 � | ( P Z ( z ) − P Z ( z )) | . 2 z ∈Z 10

  19. 1. Preliminaries Defjnition � P Z ( z ) � � D f ( Z || Z ) := P Z ( z ) f . P Z ( z ) z ∈Z Examples [Csiszár and Shields, ’04][Sason and Verdú, ’16] • f ( t ) = ( t − γ ) + : ( E γ -divergence) For any given γ ≥ 1 , � D f ( Z || Z ) = ( P Z ( z ) − γP Z ( z )) =: E γ ( Z || Z ) . z ∈Z : P Z ( z ) >γP Z ( z ) • It is not diffjcult to check that f ( t ) = ( γ − t ) + + 1 − γ leads E γ -divergence. • γ = 1 : variational distance 11

  20. 1. Preliminaries Defjnition � P Z ( z ) � � D f ( Z || Z ) := P Z ( z ) f . P Z ( z ) z ∈Z Examples [Csiszár and Shields, ’04][Sason and Verdú, ’16] • f ( t ) = ( t − γ ) + : ( E γ -divergence) For any given γ ≥ 1 , � D f ( Z || Z ) = ( P Z ( z ) − γP Z ( z )) =: E γ ( Z || Z ) . z ∈Z : P Z ( z ) >γP Z ( z ) • It is not diffjcult to check that f ( t ) = ( γ − t ) + + 1 − γ leads E γ -divergence. • γ = 1 : variational distance 11

  21. 1. Preliminaries In this study, we assume the following conditions on the function f . C1) The function f ( t ) is a strictly decreasing function of t for t ∈ (0 , 1] and a decreasing function for t ≥ 1 . C2) For any pair of positive numbers ( a, b ) , it holds that � e − nb � f lim = 0 . e na n →∞ C3) For any number a ∈ [0 , 1] , it holds that � a � 0 f = 0 . 0 Note We only consider the f -divergence with the function f satisfying C1)–C3). 12

  22. 1. Preliminaries In this study, we assume the following conditions on the function f . C1) The function f ( t ) is a strictly decreasing function of t for t ∈ (0 , 1] and a decreasing function for t ≥ 1 . C2) For any pair of positive numbers ( a, b ) , it holds that � e − nb � f lim = 0 . e na n →∞ C3) For any number a ∈ [0 , 1] , it holds that � a � 0 f = 0 . 0 Note We only consider the f -divergence with the function f satisfying C1)–C3). 12

  23. 1. Preliminaries In this study, we assume the following conditions on the function f . C1) The function f ( t ) is a strictly decreasing function of t for t ∈ (0 , 1] and a decreasing function for t ≥ 1 . C2) For any pair of positive numbers ( a, b ) , it holds that � e − nb � f lim = 0 . e na n →∞ C3) For any number a ∈ [0 , 1] , it holds that � a � 0 f = 0 . 0 Note We only consider the f -divergence with the function f satisfying C1)–C3). 12

  24. 1. Preliminaries In this study, we assume the following conditions on the function f . C1) The function f ( t ) is a strictly decreasing function of t for t ∈ (0 , 1] and a decreasing function for t ≥ 1 . C2) For any pair of positive numbers ( a, b ) , it holds that � e − nb � f lim = 0 . e na n →∞ C3) For any number a ∈ [0 , 1] , it holds that � a � 0 f = 0 . 0 Note We only consider the f -divergence with the function f satisfying C1)–C3). 12

  25. 1. Preliminaries 13

  26. 2. Main result Note √ t , and f ( t ) = (1 − t ) + satisfy three conditions, f ( t ) = − log t , f ( t ) = 1 − while f ( t ) = t log t does not satisfy C1). 14

  27. 1. Preliminaries Note f ( t ) = ( γ − t ) + + 1 − γ satisfy three conditions, while f ( t ) = ( t − γ ) + does not satisfy C1). 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend