reliable and efficient model reduction of parametrized
play

Reliable and efficient model reduction of parametrized aerodynamics - PowerPoint PPT Presentation

Reliable and efficient model reduction of parametrized aerodynamics problems - error estimation and adaptivity Masayuki Yano University of Toronto Institute for Aerospace Studies Joint work with Eugene Du & Michael Sleeman Algorithms for


  1. Reliable and efficient model reduction of parametrized aerodynamics problems - error estimation and adaptivity Masayuki Yano University of Toronto Institute for Aerospace Studies Joint work with Eugene Du & Michael Sleeman Algorithms for Dimension and Complexity Reduction ICERM, Providence, United States 27 March 2020

  2. Acknowledgment Students: Eugene Du Michael Sleeman Acknowledgment: Anthony Patera Sponsors: Natural Sciences and Engineering Research Council of Canada Canada Foundation for Innovation SciNet

  3. Motivation: parametrized aerodynamics problems Goal: rapid and reliable output prediction of parametrized nonlinear PDEs in many-query/real-time scenarios. PDEs: compressible (Reynolds-averaged) Navier-Stokes Many-query/real-time scenarios: parameter & design sweep uncertainty quantification unsteady flow prediction 1

  4. Mathematical problem µ PDE: given µ ∈ D ⊂ R P , find u ( µ ) ∈ V s.t. ∇ · ( F ( u ( µ ); µ ) + K ( u ( µ ); µ ) ∇ u ( µ ) ) = S ( u ( µ ); µ ) � �� � � �� � � �� � advection flux diffusion flux source and evaluate output s ( µ ) ≡ q ( u ( µ ); µ ) . � �� � output functional Challenges: aerodynamic flows are “complex” nonlinearity convection dominance wide range of scales limited regularity 2

  5. Objective Goal: model reduction for “complex” PDEs: s ( µ ) ± ∆ s ( µ ) µ ∈ D �→ ˜ u ( µ ) �→ ˜ . � �� � ���� � �� � parameter state output + err. est. 1. rapid: orders of magnitude online computational reduction and efficient offline training 2. reliable: quantitative online error estimate in predictive setting and adaptive error control in offline training 3. automated: minimal user intervention in training 3

  6. Objective Goal: model reduction for “complex” PDEs: s ( µ ) ± ∆ s ( µ ) µ ∈ D �→ ˜ u ( µ ) �→ ˜ . � �� � ���� � �� � parameter state output + err. est. 1. rapid: orders of magnitude online computational reduction and efficient offline training 2. reliable: quantitative online error estimate in predictive setting and adaptive error control in offline training 3. automated: minimal user intervention in training Q: can we bring to complex problems the level of rapidness, reliability, and autonomy that reduced basis method achieves for “textbook” linear problems? 3

  7. Goal-oriented model reduction of nonlinear PDEs Overview: FE, RB, and hyperreduction (EQP) FE: error estimation and adaptation RB-EQP: error control RB-EQP: error estimation Greedy algorithm Example: ONERA M6 RANS Related work

  8. Goal-oriented model reduction of nonlinear PDEs Overview: FE, RB, and hyperreduction (EQP) FE: error estimation and adaptation RB-EQP: error control RB-EQP: error estimation Greedy algorithm Example: ONERA M6 RANS Related work

  9. Discontinuous Galerkin (DG) method [Reed & Hill; Cockburn & Shu; . . . ] DG space: N h -dim discontinuous P p space V h . DG-FEM: given µ ∈ D , find u h ( µ ) ∈ V h s.t., ∀ v h ∈ V h , � � � � r µ ( u h ( µ ) , v h ) = −∇ v h · F µ ( u h ( µ )) · · · dx + · · · ds = 0 , κ σ κ ∈T h σ ∈ Σ h � �� � � �� � element integral facet integral and evaluate output s h ( µ ) ≡ q µ ( u h ( µ )) . u h Features: stability for conservation laws unstructured meshes hp flexibility σ ∈ Σ h κ ∈ T h 4

  10. DG reduced basis (RB) method RB space: N ≪ N h -dim space V N = span { u h ( µ i ) } N = span { φ i } N ⊂ V h . i =1 i =1 � �� � � �� � snapshots orth. basis RB: given µ ∈ D , find u N ( µ ) ∈ V N s.t. r µ ( u N ( µ ) , v N ) = 0 ∀ v N ∈ V N and evaluate output s N ( µ ) = q µ ( u N ( µ )) . Caveat: N ≪ N h but computation of r µ ( · , · ) requires O ( N h ) ops. φ 1 φ 2 5

  11. Hyperreduction: empirical quadrature procedure (EQP) [cf. EIM, MPE, GNAT, ECSW, . . . ] Hyperreduction: find ˜ r µ ( · , · ) ≈ r µ ( · , · ) that admits O ( N ) evaluation � �� � � �� � hyperreduced residual residual RB-EQP hyperreduced residual: [w/ Patera for non-DG] � r µ ( · , · ) ≡ ˜ ρ κ r µ,κ ( · , · ) ���� � �� � κ ∈T h EQP “element-wise” weights residual with sparse weights nnz { ρ κ } = O ( N ≪ N h ) . 6

  12. Hierarchy of approximations & errors Approximation hierarchy: dim. res. eval. sources of error PDE ∞ ∞ − FE N h O ( N h ) FE space: V h ⊂ V RB N ≪ N h O ( N h ) RB space: V N ⊂ V h RB-EQP N ≪ N h O ( N ) hyperreduction: ˜ r µ ( · , · ) � = r µ ( · , · ) Goal: in each level of approximation 1. estimate errors 2. adaptively control errors | s − ˜ s N | ≤ | s − s h | + | s h − s N | + | s N − ˜ s N | � δ � �� � � �� � � �� � FE error RB error hyperred error 7

  13. Goal-oriented model reduction of nonlinear PDEs Overview: FE, RB, and hyperreduction (EQP) FE: error estimation and adaptation RB-EQP: error control RB-EQP: error estimation Greedy algorithm Example: ONERA M6 RANS Related work

  14. FE dual-weighted residual (DWR) error estimate [Becker & Rannacher; Prudhomme & Oden; . . . ] Key: not all errors/residuals are important for output Dual problem: find z ˆ h ⊃ V h s.t. h ∈ V ˆ r du µ ( u h ; w, z du N ) ≡ r ′ h ) − q ′ µ ( u h ; w, z ˆ µ ( u h ; w ) = 0 ∀ w ∈ V ˆ h DWR error estimate: η fe h ≡ | r µ ( u h , z ˆ h ) | ≈ | s − s h | Elemental error indicator: η fe h,κ ≡ | r µ ( u h , z ˆ h | κ ) | primal u h error indicator η fe h,κ ⇒ dual z ˆ h 8

  15. FE dual-weighted residual (DWR) error estimate [Becker & Rannacher; Prudhomme & Oden; . . . ] Key: not all errors/residuals are important for output Dual problem: find z ˆ h ⊃ V h s.t. h ∈ V ˆ r du µ ( u h ; w, z du N ) ≡ r ′ h ) − q ′ µ ( u h ; w, z ˆ µ ( u h ; w ) = 0 ∀ w ∈ V ˆ h DWR error estimate: η fe h ≡ | r µ ( u h , z ˆ h ) | ≈ | s − s h | Elemental error indicator: η fe h,κ ≡ | r µ ( u h , z ˆ h | κ ) | primal u h error indicator η fe h,κ ⇒ dual z ˆ h 8

  16. FE dual-weighted residual (DWR) error estimate [Becker & Rannacher; Prudhomme & Oden; . . . ] Key: not all errors/residuals are important for output Dual problem: find z ˆ h ⊃ V h s.t. h ∈ V ˆ r du µ ( u h ; w, z du N ) ≡ r ′ h ) − q ′ µ ( u h ; w, z ˆ µ ( u h ; w ) = 0 ∀ w ∈ V ˆ h DWR error estimate: η fe h ≡ | r µ ( u h , z ˆ h ) | ≈ | s − s h | Elemental error indicator: η fe h,κ ≡ | r µ ( u h , z ˆ h | κ ) | primal u h error indicator η fe h,κ ⇒ dual z ˆ h 8

  17. FE dual-weighted residual (DWR) error estimate [Becker & Rannacher; Prudhomme & Oden; . . . ] Key: not all errors/residuals are important for output Dual problem: find z ˆ h ⊃ V h s.t. h ∈ V ˆ r du µ ( u h ; w, z du N ) ≡ r ′ h ) − q ′ µ ( u h ; w, z ˆ µ ( u h ; w ) = 0 ∀ w ∈ V ˆ h DWR error estimate: η fe h ≡ | r µ ( u h , z ˆ h ) | ≈ | s − s h | Elemental error indicator: η fe h,κ ≡ | r µ ( u h , z ˆ h | κ ) | primal u h error indicator η fe h,κ ⇒ dual z ˆ h 8

  18. Anisotropic adaptive mesh refinement Employ Solve → Estimate → Mark → Refine . Solve: DG-FEM Estimate: dual-weighted residual (DWR) Mark: (i) local solve: find u κ i h for κ i h,κ i ≡ | r h ( u κ i (ii) anisotropic error indicator: η fe h , z ˆ h | κ ) | Refine: anisotropic hanging-node refinement 9

  19. Goal-oriented model reduction of nonlinear PDEs Overview: FE, RB, and hyperreduction (EQP) FE: error estimation and adaptation RB-EQP: error control RB-EQP: error estimation Greedy algorithm Example: ONERA M6 RANS Related work

  20. Recap: empirical quadrature procedure (EQP) Hyperreduction: approx. r µ ( · , · ) by ˜ r µ ( · , · ) that admits O ( N ) eval. RB-EQP residual: � r µ ( · , · ) ≡ ˜ ρ κ r µ,κ ( · , · ) ���� � �� � κ ∈T h EQP “element-wise” weights residual 10

  21. Recap: empirical quadrature procedure (EQP) Hyperreduction: approx. r µ ( · , · ) by ˜ r µ ( · , · ) that admits O ( N ) eval. RB-EQP residual: � r µ ( · , · ) ≡ ˜ ρ κ r µ,κ ( · , · ) ���� � �� � κ ∈T h EQP “element-wise” weights residual that provides 1. energy stability 2. sparsity: nnz { ρ κ } = O ( N ≪ N h ) 3. quantitative error control: | s N − ˜ s N | � δ 10

  22. Recap: empirical quadrature procedure (EQP) Hyperreduction: approx. r µ ( · , · ) by ˜ r µ ( · , · ) that admits O ( N ) eval. RB-EQP residual: � r µ ( · , · ) ≡ ˜ ρ κ r µ,κ ( · , · ) ���� � �� � κ ∈T h EQP “element-wise” weights residual that provides 1. energy stability ⇒ residual redistribution 2. sparsity: nnz { ρ κ } = O ( N ≪ N h ) ⇒ choice of { ρ κ } 3. quantitative error control: | s N − ˜ s N | � δ 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend