problem statement parametrized weak form
play

Problem statement: parametrized weak form Exact parametrized - PowerPoint PPT Presentation

Problem statement: parametrized weak form Exact parametrized elastodynamic problem m 2 u e ( x , t ; ) + c u e ( x , t ; ) ( ) = g ( t ) f ( v ; ), + a u e ( x


  1. Problem statement: parametrized weak form • Exact parametrized elastodynamic problem ⎛ ⎞ ⎛ ⎞ m ∂ 2 u e ( x , t ; µ ) ⎟ + c ∂ u e ( x , t ; µ ) ⎟ ⎟ ⎜ ⎜ ( ) = g ( t ) f ( v ; µ ), ⎟ ⎟ ⎜ ⎜ ⎟ + a u e ( x , t ; µ ), v ; µ , v ; µ , v ; µ ⎟ ⎟ ⎜ ⎜ ⎟ ⎟ ⎜ ⎜ ∂ t 2 ∂ t ⎜ ⎜ ⎝ ⎠ ⎝ ⎠ d , t ∈ [0, T ], µ ∈ D ( ) 1 ( Ω ) ∀ v ∈ H 0 e e ( x ,0; µ ) = 0; ∂ u i • Initial conditions: u i ∂ t ( x ,0; µ ) = 0 e x , t ; µ • Boundary conditions: ( ) = 0, ∀ x ∈ ∂Ω D u i e x , t ; µ ( ) ˆ σ ij n j = t i , ∀ x ∈ ∂Ω N • Space-time quantity of interest: T T ( ) dt s e ( µ ) = ∫ ∫ u e ∫ u e ( x , t ; µ ) ( x , t ; µ ) Σ ( x , t ) dxdt = ℓ 0 Γ o 0 ( ) → s e ( µ )? µ → u e ( µ )

  2. Problem statement… • Bi/linear forms ∂ 2 w i ( ) = ∑ ∫ m w , v ; µ ρ v i ∂ t 2 d Ω Ω i β ∂ v i ∂ w k ( ) = ∑ ∑ ∫ ∫ c w , v ; µ α ρ v i w i d Ω + C ijkl d Ω ∂ x j ∂ x l Ω Ω i i , j , k , l ∂ v i ∂ w k ( ) = ∑ ∫ a w , v ; µ C ijkl d Ω ∂ x j ∂ x l Ω i , j , k , l ( ) = ∑ ∑ ∫ ∫ f v ; µ b i v i d Ω + v i t i d Γ Ω ∂Ω N i i • Bilinear forms are continuous and coercive. m , a • Assume affine parameter dependence of the bi/linear forms

  3. Finite element discretization Trapezoidal scheme • “Method of Lines”: spatial discretize (FE) + temporal discretize (Newmark) – Discretize the time span into [0, T ] [ t k , t k + 1 ], 0 ≤ k ≤ K − 1 – Solve following elliptic systems ( K − 1) ( ) = F ( v ), A u k + 1 ( µ ), v ; µ ∀ v ∈ Y h , µ ∈ D , 1 ≤ k ≤ K − 1 1 2 Δ t c ( u k + 1 ( µ ), v ; µ ) + 1 1 ( ) = A u k + 1 ( µ ), v ; µ Δ t 2 m ( u k + 1 ( µ ), v ; µ ) + 4 a ( u k + 1 ( µ ), v ; µ ) F ( v ) = − 1 2 Δ t c ( u k − 1 ( µ ), v ; µ ) − 1 1 Δ t 2 m ( u k − 1 ( µ ), v ; µ ) + 4 a ( u k − 1 ( µ ), v ; µ ) Δ t 2 m ( u k ( µ ), v ; µ ) − 1 2 2 a ( u k ( µ ), v ; µ ) + g eq ( t k ) f ( v ; µ ) + ∂ u ( µ , t 0 ) ( ) → s ( µ )? u ( µ , t 0 ) = 0; = 0 µ → u ( µ ) ∂ t K − 1 t k + 1 ∑ ( ) dt – FE quantity of interest: ∫ s ( µ ) = u ( x , t ; µ ) ℓ t k k = 0

  4. RB approximation: Galerkin projection • Introduce ; S * = { µ 1 ∈ D , µ 2 ∈ D , … , µ N ∈ D }, 1 ≤ N ≤ N max and nested Lagrangian RB spaces Y N = span{ ζ n ,1 ≤ n ≤ N }, 1 ≤ N ≤ N max – Galerkin projection: N ∑ u N ( µ , t k ) = ( µ , t k ) ζ n , u N n ∀ ζ n ∈ Y N , 1 ≤ k ≤ K n = 1 – Solve the following elliptic systems ( ) = F ( v ), ∀ v ∈ Y N , µ ∈ D , 1 ≤ k ≤ K − 1 k + 1 ( µ ), v ; µ A u N ( ) → s N ( µ )? – RB quantity of interest: µ → u N ( µ ) K − 1 t k + 1 ∑ ( ) dt ∫ s N ( µ ) = u N ( x , t ; µ ) ℓ t k k = 0

  5. Approaches to build goal-oriented basis functions? • Dual Weighted Residual (DWR) method [Meyer et al . 2003] [Grepl et al. 2005] [Bangerth et al . 2001] [Bangerth et al. 2010] – Solve additionally an adjoint problem – Remove the snapshots cause small error – keep the ones cause large error • Build optimal goal-oriented basis functions based on all POD snapshots [Bui et al . 2007] [Willcox et al. 2005] – Use adjoint technique to build optimally basis functions based on all POD snapshots • We want to build optimally goal-oriented basis functions without computing/storing all the snapshots ? RB + Greedy sampling strategy [Rozza, Huynh, Patera 2008]

  6. Standard POD-Greedy algorithm [Haasdonk et al . 2008] [Hoang et al . 2013] st = 0 (a) Set Y N M max { ξ k } k = 1 1) Where: given a set of snapshots st = µ 0 (b) Set µ * the POD space is defined as: W M (c) While » st N ≤ N max ⎛ ⎞ 2 ⎟ ⎜ M max M 1 ⎟ ⎜ ∑ ∑ ⎟ { } k W st = st ( µ * ⎜ W M = arg min inf ξ k − α m v m ⎟ st , t k ),0 ≤ k ≤ K (d) e proj ⎜ ⎟ ⎜ ⎟ M max V M ⊂ span{ ξ 1 , … , ξ M max } α k ∈ ! M ⎟ ⎜ ⎜ ⎟ k = 1 m = 1 st ⊕ POD( W st , M ) ⎝ ⎠ » st Y N + M ← Y N (e) • or, written as: (f) N ← N + M ( ) » W M = POD { ξ 1 , … , ξ M max }, M ⎧ ⎫ ⎪ ⎪ ⎪ ⎪ (g) » ⎪ Δ u ( µ ) ⎪ st = arg max ⎪ ⎪ µ * ⎨ ⎬ ⎪ ⎪ • 2) Projection error: 2 µ ∈Ξ train ⎪ K ⎪ (h) ∑ st ( µ , t k ) u N ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ k = 1 Y { } k ( µ ) = u k ( µ ) − proj Y N u k ( µ ) st ← S * e proj ∪ st st (i) S * µ * » (j) end. 3) Residual ( ) , R ( v ; µ , t k ) = F ( v ) − A u N k + 1 ( µ ), v ; µ 1 ≤ k ≤ K − 1 2 K ∑ (k) R st ( v ; µ , t k ) Δ u ( µ ) = k = 1 ′ Y

  7. Goal-oriented vs. standard POD-Greedy algorithm go = 0 st = 0 (a) Set (a) Set Y N Y N go = µ 0 st = µ 0 (b) Set (b) Set µ * µ * (c) While (c) While go st N ≤ N max N ≤ N max { } { } W st = st ( µ * W go = go ( µ * st , t k ),0 ≤ k ≤ K go , t k ),0 ≤ k ≤ K (d) (d) e proj e proj st ⊕ POD( W st , M ) go ⊕ POD( W go , M ) st Y N + M ← Y N go (e) (e) Y N + M ← Y N CV process (f) (f) N ← N + M N ← N + M ⎧ ⎫ ⎪ ⎪ ⎪ ⎪ ( ) st ⊂ Ξ n + 1 (g) Find ! (g) st st ⎪ ⎪ Δ u ( µ ) N s.t. ∀ µ ∈ Ξ n ⊂ S * st = arg max ⎪ ⎪ µ * ⎨ ⎬ ⎪ ⎪ Δ s ( µ ) 2 µ ∈Ξ train ⎪ ⎪ (h) K ∑ st ( µ , t k ) η T ≤ ≤ 2 − η T u N ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ k = 1 go ( µ ) Y s ( µ ) − s N { } st ← S * ∪ (i) st st S * µ * ⎧ ⎫ ⎪ ⎪ Δ s ( µ ) ⎪ ⎪ go = arg max µ * (h) (j) end. ⎨ ⎬ ⎪ ⎪ st ( µ ) s ! µ ∈Ξ train ⎪ ⎪ ⎩ ⎭ N go ← S * { } (i) ∪ go go S * µ * Asymptotic output error estimation (j) end. 2 st ( µ ) − s N go ( µ ) Δ s ( µ ) = s ! K ∑ (k) (k) R st ( v ; µ , t k ) Δ u ( µ ) = N k = 1 ′ Y

  8. Cross-validation process

  9. Numerical example: 3D dental implant model N = 26343 T = 0.001s Δ t = 2 × 10 − 6 s K = 500 Ξ train = 900

  10. 3D Dental implant model problem… • Material properties ( ) ∈ D ≡ [1 × 10 6 Pa,25 × 10 6 ] × [5 × 10 − 6 ,5 × 10 − 5 ] ⊂ ! P = 2 µ = E , β • Explicit bi/linear forms: ∑ ∫ f ( v ) = v i φ i d Γ Γ l i 5 1 ∑ ∑ ∫ m ( w , v ) = ρ r w i v i d Ω ∫ ℓ ( v ) = v 1 d Γ Ω r | Γ o | Γ o r = 1 i 5 ∂ v i ∂ w k ∂ v i 3 ∂ w k ∑ ∑ ∑ ∫ r ∫ a ( w , v ; µ ) = C ijkl d Ω + µ 1 C ijkl d Ω ∂ x j ∂ x l ∂ x j ∂ x l Ω r Ω 3 r = 1, r ≠ 3 i , j , k , l i , j , k , l 5 ∂ v i ∂ w k ∂ v i 3 ∂ w k ∑ ∑ ∑ ∫ r ∫ c ( w , v ; µ ) = β r C ijkl d Ω + µ 2 µ 1 C ijkl d Ω ∂ x j ∂ x l ∂ x j ∂ x l Ω r Ω 3 r = 1, r ≠ 3 i , j , k , l i , j , k , l

  11. Numerical results… Standard POD-Greedy algorithm GO POD-Greedy algorithm

  12. Numerical results… Cross-validation (CV) process All true errors of solution and QoI

  13. Numerical results: QoI True errors vs Error approx. for case 1 Gauss load Max and min effectivities for case 1 Gauss load

  14. Numerical results… • Computational time (online stage) • All calculations were performed on a desktop Intel(R) Core(TM) i7-3930K CPU @3.20GHz 3.20GHz, RAM 32GB , 64-bit Operating System .

  15. References 1. Wang, S., Liu, G. R., Hoang, K. C. , & Guo, Y. (2010). Identifiable range of osseointegration of dental implants through resonance frequency analysis. Medical engineering & physics , 32 (10), 1094-1106. 2. Hoang, K. C. , Khoo, B. C., Liu, G. R., Nguyen, N. C., & Patera, A. T. (2013). Rapid identification of material properties of the interface tissue in dental implant systems using reduced basis method. Inverse Problems in Science and Engineering , 21 (8), 1310-1334. 3. Hoang, K. C. , Kerfriden, P., Khoo, B. C., & Bordas, S. P. A. (2015). An efficient goal-oriented sampling strategy using reduced basis method for parametrized elastodynamic problems. Numerical Methods for Partial Differential Equations , 31 (2), 575-608. 4. Hoang, K. C. , Kerfriden, P., & Bordas, S. (2015). A fast, certified and "tuning-free" two-field reduced basis method for the metamodelling of parametrised elasticity problems. Computer Methods in Applied Mechanics and Engineering, accepted. 5. Hoang, K. C. , Fu, Y., & Song, J. H. (2015). An hp-Proper Orthogonal Decomposition- Moving Least Squares approach for molecular dynamics simulation. Computer Methods in Applied Mechanics and Engineering, accepted.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend