reduced order models for uncertainty quantification and
play

Reduced-order models for uncertainty quantification and parameter - PowerPoint PPT Presentation

Reduced-order models for uncertainty quantification and parameter estimation in cardiac models Stefano Pagani Alfio Quarteroni Andrea Manzoni MOX-Dipartimento di


  1. Reduced-order models for uncertainty quantification and parameter estimation in cardiac models ∆ Stefano Pagani ∆ ∫ ∆ Alfio Quarteroni Andrea Manzoni MOX-Dipartimento di Matematica Politecnico di Milano (Italy) ∫ MATH-CMCS Modelling and Scientific Computing EPFL (Switzerland) ∆

  2. Integrating data within mathematical models potential recordings imaging 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.2 -0.2 -0.4 -0.4 Clinical -0.6 -0.6 -0.8 -0.8 0 100 200 300 400 0 100 200 300 400 t [ms] t [ms] 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 data -0.8 -0.8 0 100 200 300 400 0 100 200 300 400 t [ms] t [ms] 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 0 100 200 300 400 0 100 200 300 400 t [ms] t [ms] Pre-processing Forward model Parameter selection Personalization Prediction Pipeline segmentation electrophysiology sensitivity analysis parameter estimation evaluation of +meshing electromechanics forward UQ backward UQ new scenarios Challenging issues: I computational complexity of full-order models (e.g. finite element method); I noisy clinical data; I uncertainties related to geometry, (partially known) physical coefficients, boundary/ initial conditions. Stefano Pagani

  3. Integrating data within mathematical models potential recordings imaging 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.2 -0.2 -0.4 -0.4 Clinical -0.6 -0.6 -0.8 -0.8 0 100 200 300 400 0 100 200 300 400 t [ms] t [ms] 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 data -0.8 -0.8 0 100 200 300 400 0 100 200 300 400 t [ms] t [ms] 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 0 100 200 300 400 0 100 200 300 400 t [ms] t [ms] Pre-processing Forward model Parameter selection Personalization Prediction Pipeline segmentation electrophysiology sensitivity analysis parameter estimation evaluation of +meshing electromechanics forward UQ backward UQ new scenarios Many-query problems: I parameter selection for reducing the uncertainty space dimension (sensitivity analysis); I uncertainty propagation on outputs of clinical interest (forward UQ); I parameter estimation for model personalization (backward UQ). Stefano Pagani

  4. Methods Variance-based sensitivity analysis LOCAL Reduced Order Models for parameter selection local approximation of both nonlinear term and solution RB-MCMC sampling procedure SURROGATE MODELs kriging and GP-based ROM error surrogate (ROMES) Reduced basis Ensemble Kalman filter ROMES for time-dependent outputs for sequential state/parameter estimation Forward model Parameter selection Personalization electrophysiology sensitivity analysis parameter estimation electromechanics forward UQ backward UQ - S. Pagani, A. Manzoni, A. Quarteroni . “Numerical approximation of - S. Pagani . “Reduced-order models for inverse problems and uncertainty parametrized problems in cardiac electrophysiology by a local reduced basis quantification in cardiac electrophysiology”. PhD Thesis (2017) . method”. In preparation , 2017 . - S. Pagani, A. Manzoni and A. Quarteroni . “Efficient state/parameter - D. Bonomi . “Reduced order models for the parametrized cardiac estimation in nonlinear unsteady PDEs by a reduced basis ensemble Kaman filter”. electromechanical problem”. PhD Thesis (2017) . SIAM/ASA Journal on Uncertainty Quantification , 5(1): 890–921, 2017 . - M. Drohmann and K. Carlberg . “The ROMES method for statistical - A. Manzoni, S. Pagani and T. Lassila . “Accurate solution of Bayesian modeling of reduced-order-model error”. SIAM/ASA Journal on Uncertainty inverse uncertainty quantification problems using model and error reduction Quantification , 3(1):116–145, 2015. methods”. SIAM/ASA Journal on Uncertainty Quantification , 4(1):380–412, 2016. Stefano Pagani

  5. Reduced basis method in a nutshell Goal : compute efficiently the solution of a problem when a set of parameters vary V h M h u h ( µ 1 ) µ 1 µ N µ 2 µ 2 µ d u h ( µ N ) u h ( µ d ) µ P µ 1 u h ( µ 2 ) • parameter-dependent PDEs 
 (e.g. cardiac electrophysiology, 
 nonlinear mechanics, 
 coupled electro-mechanics,…) • (un)steady (non)linear PDEs • physical/geometrical parameters { u h ( µ 1 ) , . . . , u h ( µ N ) } u h ( µ n ) ✓ material coefficients ✓ electrical conductivities ✓ initial/boundary data ✓ geometrical configuration … Stefano Pagani

  6. Reduced basis method in a nutshell Test case: forward problem I Idea: Galerkin approximation on a low dimensional subspace V n ⇢ V h (reduced basis space) of dimension n ⌧ N h = dim( V h ). Linear steady case: Finite Elements method Reduced Basis method u h u n ϕ i φ i N h n X X u n u h u n ( x ; µ ) = i φ i ( x ) u h ( x ; µ ) = i ϕ i ( x ) N h ≫ n i =1 i =1 A h f h A n f n u h u n = = Stefano Pagani

  7. Reduced basis method in a nutshell A numerical example RB Approximation 
 { u n ( µ ) ) : µ ∈ P} (new parameter value) V h M h u h ( µ 1 ) φ 2 µ 1 µ N µ 2 µ 2 µ d u h ( µ d ) µ P µ 1 φ 1 u h ( µ 2 ) φ n • parameter-dependent PDEs 
 (e.g. cardiac electrophysiology, 
 nonlinear mechanics, 
 coupled electro-mechanics,…) • (un)steady (non)linear PDEs • physical/geometrical parameters V n = span { φ 1 , . . . , φ n } ✓ material coefficients ✓ electrical conductivities P n ✓ initial/boundary data ✓ geometrical configuration … A n f n u n = Stefano Pagani

  8. Galerkin projection Test case: forward problem I Construction of the subspace: proper orthogonal decomposition (POD) on the { u h ( µ 1 ) , . . . , u h ( µ N ) } set of high-fidelity snapshots { u ( ` ) h ( µ ) } and { w ( ` ) h ( µ ) } . I ROM: projection of the full-order arrays on the reduced subspace V n through an orthogonal projection. Given a training set P train ⊂ P of N train parameter vectors, we compute the so-called Finite Elements method Reduced Basis method V = [ φ 1 , . . . , φ n ] snapshots matrix by solving the full-order system for each µ ∈ P train : u h u n S u = [ u h ( t (0) ; µ 1 ) , u h ( t (1) ; µ 1 ) ,..., u h ( t (0) ; µ 2 ) , u h ( t (1) ; µ 2 ) ,..., ] ∈ R N h × N s , ϕ i φ i of dimensions N h × N s , with N s = N train N t . A n V T A h V = The POD technique selects as basis functions { φ i } of the reduced-space the first n left N h n singular vectors of the snapshots matrix S u . X X u n u h u n ( x ; µ ) = i φ i ( x ) u h ( x ; µ ) = i ϕ i ( x ) N h ≫ n i =1 i =1 ζ T     σ 1   1 . ...     . S u =  φ 1 ... φ n φ N  . ...      .      f n V T f h = ζ T σ N N A n f n u n = A h f h u h = Stefano Pagani Stefano Pagani

  9. Discrete empirical interpolation method Test case: forward problem I To deal efficiently with the nonlinear terms at the reduced order level we employ the discrete empirical interpolation method (DEIM) N ( u n ; µ ) ≈ V T U ( P T U ) − 1 N ( P T Vu n ; µ ) . | {z } | {z } n × m D m D × 1 Procedure : I compute the snapshots matrix of the nonlinear term N : S N = [ N ( u (1) h ; µ 1 ) , N ( u (2) h ; µ 1 ) ,..., N ( u (1) h ; µ 2 ) , N ( u (2) h ; µ 2 ) ... ] ∈ R N h × N s ; I compute the matrix of basis functions U = [ φ 1 ,..., φ m D ] by applying the POD technique on S N ; I select m D degrees of freedom { i 1 ,..., i m D } and construct the index matrix P = [ e i 1 ,..., e i m D ] ( e i ) j = δ ij . Reduced-mesh : we need to assemble the nonlinear operator on the elements related to the degrees of freedom { i 1 ,..., i m D } selected by the DEIM algorithm. S. Chaturantabut and D. C. Sorensen . “Nonlinear model reduction via discrete empirical interpolation”. SIAM J. Sci. Comp. , 32(5):2737–2764, 2010 Stefano Pagani March 1, 2017

  10. Local Reduced basis method A numerical example I Warning: for advection dominant or traveling front problem it is difficult to ensure that n ⌧ N h . V h M h φ 2 2 u h ( µ 1 ) φ 1 µ 1 µ N µ 2 µ 2 µ d 2 u h ( µ d ) φ 1 φ 2 µ n P µ 1 n u h ( µ 2 ) φ 1 1 φ 2 1 Tested clustering techniques for offline snapshots subdivision: • time based • parameter based • state based: -projection error based n = span { φ i 1 , . . . , φ i V i n i } i = 1 , . . . , N c -k-means P i n S. Pagani, A. Manzoni, A. Quarteroni . “Numerical approximation of parametrized problems in cardiac electrophysiology by a local reduced A n f n basis method”. In preparation (2017) . u n = Stefano Pagani

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend