reduced form of tise for h atom separation of variables
play

Reduced Form of TISE for H-Atom: Separation of Variables Movement - PowerPoint PPT Presentation

Reduced Form of TISE for H-Atom: Separation of Variables Movement of electronmuch faster than heavy nucleus : + m x m x = = x x x x e e N N e N CM Separate translational motion relative frame . M + m y m y =


  1. Reduced Form of TISE for H-Atom: Separation of Variables Movement of electronmuch faster than heavy nucleus : + m x m x = − = x x x x e e N N ⇒ e N CM Separate translational motion relative frame . M + m y m y = − = y y y y e e N N Separate H in terms of CM and electronic coordinates e N CM M Ψ x y z x , , , y , z = Ψ x y z , , •Ψ x , y , z ( , ) ( ) ( ) + m z m z Total e e e N N N e e e e N N N N = − = z z z z e e N N 2 h e N CM − M ∇ Ψ Ψ 2 and = E CM N N N 2 M m m µ = Reduced Mass: e N   2 2 h Ze − M ∇ Ψ Ψ 2 E − =  ÷ e e e e µ  2 r  Free Particle: movement of The whole atom: You solved it! Relative motion of the electron and With respect to the Nucleus Relative motion of electron wrt nucleus:   ∂ ∂ ∂ h 2 2 2 2 2 Ze Ψ − Ψ + Ψ + Ψ − Ψ E ( , , ) x y z ( , , ) x y z ( , , ) x y z ( , , ) x y z = ( , , ) x y z  ÷ e e µ ∂ e ∂ e ∂ e e 2 2 2 2 x y z + +   2 2 2 x y z i i i Problem: 2 nd order PDE with 3 variables - can not be separated!

  2. Spherical Polar Coordinates Conversion from Cartesian coordinates Used for spherically symmetric systems

  3. Hamiltonian: Spherical Polar Coordinates Looks can be deceiving! Looks can be deceiving! Solve this PDE  need to separate variables r , θ, φ : POSSIBLE

  4. TISE for H-Atom in spherical-polar coordinates   ∂ ∂ ∂ ∂ ∂ 2     1 1 1 Ψ θ φ + θ Ψ θ φ + Ψ θ φ 2 r ( , , ) r sin ( , , ) r ( , , ) r   ÷  ÷  ∂ ∂ θ ∂ θ ∂ θ θ ∂ φ 2 2 2 r r  r  sin   sin   = ( , , ) 0   µ 2 2 Ze + + Ψ θ φ E r  ÷ h 2 r   2 nd order Partial Differential Equation with three variables µ µ µ µ = + θ + φ Ψ θ φ = Θ θ Φ φ Special olution if H s H r ( ) H ( ) H ( ) : ( , , ) r R r ( ) ( ) ( )       d d 1 d d [ ] [ ] Θ θ Φ φ + θ Θ θ Φ φ 2 r R r ( ) ( ). ( ) sin ( ) R r ( ). ( )  ÷  ÷   θ θ θ dr  dr  sin d  d  1     2 r 2 1 d [ ] + Φ φ Θ θ ( ) R r ( ). ( )   θ φ 2 2 sin d   = ( ) 0   µ 2 2 Ze + + Θ θ Φ φ E R ( ) ( ) r  ÷ 2 h r  

  5. Separation of Variables r , θ , φ ΘΦ R . . Ψ θ φ = Θ θ Φ φ = ( , , ) r R r ( ). ( ). ( ) Θ Φ  R        Φ Θ µ 2 2 1 d d R d d R d 2 Ze ΘΦ R ΘΦ + θ + + + = 2 r sin E 0    ÷  ÷  ÷ θ θ θ θ φ 2 2 2 2 r dr dr sin d d sin d h r         θ 2 2 r sin Multiply by and rearrange : Θ Φ R . .   θ θ Θ µ Φ 2     2 2 sin d dR sin d d 2 Ze 1 d + θ + + θ = − 2 2 2 r sin E r sin  ÷  ÷  ÷ Θ θ θ Φ φ 2 2 h R dr  dr  d  d  r d   = θ = φ = ⇒ θ = φ = = 2 LHS F r ( , ) G ( ) RHS F r ( , ) G ( ) Const . m ( say ) ∂ Φ 2 1 Solve 2 nd order DE to ∴ + = 2 m 0 obtain functional form of Φ ∂ φ 2 Φ(φ)

  6. Solving φ -part is relatively simple! ∂Φ = ± Φ Q im ∂ 2 1 ± φ ∂ φ im ∴ Φ φ + = 2 A e ( ) m 0 Φ φ = : ( ) Solution Φ φ ∂ φ 2 ( ) ∂ Φ = − 2 Φ 2 & m ∂ φ 2 Boundary Condition Another Quantum Number “popped out” out of Boundary Conditions: Quantization of Angular Momentum! Magnetic Quatnum Number: Can take any integral value (including zero); Restricted by another quantum number (m<l). Loosely relates to direction of orbital angular momentum; splitting of energy levels in magnetic field.

  7. Solving R(r) and Θ ( θ ) part not so simple, but can be done (in ~5-6 lectures!)   θ θ ∂ Θ µ 2 2 2     sin d dR sin d 2 r Ze − 2 m + θ + + θ = 2 2 r sin E sin 0  ÷  ÷  ÷ Θ ∂ θ θ 2 h R dr  dr   d  r   θ 2 Simply d ivide by sin and rearrange :   µ Θ   2 2 2   1 d dR 2 r Ze m 1 d d + + = − θ = β 2 r E sin ( const .)  ÷  ÷  ÷ θ Θ θ θ θ h 2 2 R dr  dr  r sin sin d  d    Boundary Only θ : Can be solved Only r : Can be solved conditions to obtain Θ(θ) part to obtain R(r) part applied! Need mathematical skills to solve the Differential Equations for R(r) and Θ ( θ ) - it will take several lectures to do so….

  8. Θ(θ)Φ(φ) are Spherical Harmonics Y l m ( θ,φ ) Easier to solve if written differently: Rigid-Rotor  already solved the angular ( θ, φ ) part: Related to Angular Momentum! ·   ∂ ∂ ∂ 2 1 1 µ θ + Ψ θ φ = Ψ θ φ 2 sin ( , ) L ( , )   θ ∂ θ ∂ θ θ ∂ φ 2 2 sin sin   L 2  Square of angular momentum: Eigenfunctions “Spherical Harmonics” l=Azimuthal Quantum Number or orbital quantum number l ≤ n-1

  9. Solve for R(r): Quantized Energies Radial Wavefunction depends on n and l: n= Principal Quantum Number=1,2,3,… Energies: E n : Essentially same as Bohr’s Equation, with slight changes Only n dependence of E: V term in H is needed for providing energies as eigenvalues. Angular parts does not have it!!!

  10. Particle in 3D-Box:Three Quantum Numbers 3 Quantum Numbers needed to Describe the system completely Normalization Conditions (each dimension)

  11. How to obtain normalized Ψ n,l,m ( r ,θ,π) ?

  12. Loose Meaning of Quantum Numbers L=0  s-orbital L=1  p-orbital L=2  d-orbital L=3  f-orbital

  13. Radial Solutions depend on n and l (l=n-1)   Zr na −    ÷ r  ÷ 2 Z + e = l 2 l 1 0   R A n l ( , ). r . L .  ÷ + nl n l   na 0 Exponential f(r,n,l,Z) g(r,Z) Decay g(r) Note: R nl  0 as r  infinity Additional restrictions on l: n ≥ l+1 arise when DE is solved

  14. Complete Wavefunction of H-Atom Lets not get intimidated: Please do not even try to remember

  15. H-Atom Complete Ψ (r, θ,φ ) for n=1,2 σ  r/a 0 F(r) only 1s 2s F(r) only 2p z F(r, θ ) 2p x, F(r, θ,φ ) y Linear combination Of two solutions is Also a solution

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend