multiple sensor target tracking basic idea
play

Multiple Sensor Target Tracking: Basic Idea Iterative updating of - PowerPoint PPT Presentation

Multiple Sensor Target Tracking: Basic Idea Iterative updating of conditional probability densities! kinematic target state x k at time t k , accumulated sensor data Z k a priori knowledge: target dynamics models, sensor model dynamics model p ( x


  1. Multiple Sensor Target Tracking: Basic Idea Iterative updating of conditional probability densities! kinematic target state x k at time t k , accumulated sensor data Z k a priori knowledge: target dynamics models, sensor model dynamics model p ( x k − 1 |Z k − 1 ) p ( x k |Z k − 1 ) • prediction: − − − − − − − − − − → sensor data Z k p ( x k |Z k − 1 ) p ( x k |Z k ) • filtering: − − − − − − − − − − → sensor model filtering output p ( x l − 1 |Z k ) p ( x l |Z k ) • retrodiction: ← − − − − − − − − − − dynamics model Sensor Data Fusion - Methods and Applications, 3rd Lecture on October 30, 2019 — slide 1

  2. The Multivariate G AUSS ian Pdf – wanted: probabilities ‘concentrated’ around a center x q ( x ) = 1 2 ( x − x ) P − 1 ( x − x ) ⊤ – quadratic distance: q ( x ) defines an ellipsoid around x , its volume and orien- tation being determined by a matrix P (symmetric: P ⊤ = P , positively definite: all eigenvalues > 0 ). � dx e − q ( x ) (normalized!) p ( x ) = e − q ( x ) / – first attempt: e − 1 1 2( x − x ) ⊤ P − 1 ( x − x ) p ( x ) = N ( x ; x , P ) = � | 2 π P | p ( x ) = � i p i N ( x ; x i , P i ) (weighted sums) – G AUSS ian Mixtures: Sensor Data Fusion - Methods and Applications, 3rd Lecture on October 30, 2019 — slide 2

  3. Very First Look at an Important Data Fusion Algorithm k ) ⊤ , Z k = { z k , Z k − 1 } Kalman filter: x k = ( r ⊤ r ⊤ k , ˙ p ( x 0 ) = N � x 0 ; x 0 | 0 , P 0 | 0 � initiation: , initial ignorance: P 0 | 0 ‘large’ N � x k − 1 ; x k − 1 | k − 1 , P k − 1 | k − 1 � dynamics model N � x k ; x k | k − 1 , P k | k − 1 � prediction: − − − − − − − − − → F k | k − 1 , D k | k − 1 x k | k − 1 = F k | k − 1 x k − 1 | k − 1 ⊤ + D k | k − 1 P k | k − 1 = F k | k − 1 P k − 1 | k − 1 F k | k − 1 � � � � current measurement z k N − − − − − − − − − − − − − → N filtering: x k ; x k | k − 1 , P k | k − 1 x k ; x k | k , P k | k sensor model: H k , R k = x k | k − 1 + W k | k − 1 ν k | k − 1 , ν k | k − 1 = z k − H k x k | k − 1 x k | k S k | k − 1 = H k P k | k − 1 H k ⊤ + R k P k | k − 1 − W k | k − 1 S k | k − 1 W k | k − 1 ⊤ , = P k | k W k | k − 1 = P k | k − 1 H k ⊤ S k | k − 1 − 1 ‘K ALMAN gain matrix’ A deeper look into the dynamics and sensor models necessary! Sensor Data Fusion - Methods and Applications, 3rd Lecture on October 30, 2019 — slide 3

  4. Create your own ground truth generator! Consider a car moving on a mountain pass road modeled by: � � � � vt x ( t ) a y sin( 4 πv Exercise 3.1 ax t ) r ( t ) = = A y ( t ) a z sin( πv ax ) z ( t ) v = 20 km h , a y = a z = 1 km, t ∈ [0 , a x /v x ] . 1. Plot the trajectory. Are the parameters reasonable? Try alternatives. 2. Calculate and plot the velocity and acceleration vectors: � � � � x ( t ) ˙ x ( t ) ¨ r ( t ) = ˙ , ¨ r ( t ) = − q . y ( t ) ˙ y ( t ) ¨ z ( t ) ˙ z ( t ) ¨ 3. Calculate for each instance of time t the tangential vectors in r ( t ) : 1 t ( t ) = r ( t ) | ˙ r ( t ) . | ˙ 4. Plot | ˙ r ( t ) | , | ¨ r ( t ) | , and ¨ r ( t ) t ( t ) over the time interval. 5. Discuss the temporal behaviour based on the trajectory r ( t ) ! Sensor Data Fusion - Methods and Applications, 3rd Lecture on October 30, 2019 — slide 4

  5. How to deal with probability density functions? • pdf p ( x ) : Extract probability statements about the RV x by integration! � dx p ( x ) = 1 ) • na¨ ıvely: positive and normalized functions ( p ( x ) ≥ 0 , • conditional pdf p ( x | y ) = p ( x,y ) p ( y ) : Impact of information on y on RV x ? � dy p ( x, y ) = � dy p ( x | y ) p ( y ) : • marginal density p ( x ) = Enter y ! • Bayes: p ( x | y )= p ( y | x ) p ( x ) p ( y | x ) p ( x ) p ( x | y ) ← p ( y | x ) , p ( x ) ! = dx p ( y | x ) p ( x ) : � p ( y ) Sensor Data Fusion - Methods and Applications, 3rd Lecture on October 30, 2019 — slide 5

  6. How to deal with probability density functions? • pdf p ( x ) : Extract probability statements about the RV x by integration! � dx p ( x ) = 1 ) • na¨ ıvely: positive and normalized functions ( p ( x ) ≥ 0 , • conditional pdf p ( x | y ) = p ( x,y ) p ( y ) : Impact of information on y on RV x ? � dy p ( x, y ) = � dy p ( x | y ) p ( y ) : • marginal density p ( x ) = Enter y ! • Bayes: p ( x | y )= p ( y | x ) p ( x ) p ( y | x ) p ( x ) p ( x | y ) ← p ( y | x ) , p ( x ) ! = dx p ( y | x ) p ( x ) : � p ( y ) ( x − y )2 2 πσ e − 1 1 2 σ 2 • certain knowledge on x : p ( x ) = δ ( x − y ) ‘ = ’ lim σ → 0 √ Sensor Data Fusion - Methods and Applications, 3rd Lecture on October 30, 2019 — slide 6

  7. How to deal with probability density functions? • pdf p ( x ) : Extract probability statements about the RV x by integration! � dx p ( x ) = 1 ) • na¨ ıvely: positive and normalized functions ( p ( x ) ≥ 0 , • conditional pdf p ( x | y ) = p ( x,y ) p ( y ) : Impact of information on y on RV x ? � dy p ( x, y ) = � dy p ( x | y ) p ( y ) : • marginal density p ( x ) = Enter y ! • Bayes: p ( x | y )= p ( y | x ) p ( x ) p ( y | x ) p ( x ) p ( x | y ) ← p ( y | x ) , p ( x ) ! = dx p ( y | x ) p ( x ) : � p ( y ) ( x − y )2 2 πσ e − 1 1 2 σ 2 • certain knowledge on x : p ( x ) = δ ( x − y ) ‘ = ’ lim σ → 0 √ � dx p ( y, x ) = � dx p ( y | x ) p x ( x ) • transformed RV y = t [ x ] : p ( y ) = Sensor Data Fusion - Methods and Applications, 3rd Lecture on October 30, 2019 — slide 7

  8. How to deal with probability density functions? • pdf p ( x ) : Extract probability statements about the RV x by integration! � dx p ( x ) = 1 ) • na¨ ıvely: positive and normalized functions ( p ( x ) ≥ 0 , • conditional pdf p ( x | y ) = p ( x,y ) p ( y ) : Impact of information on y on RV x ? � dy p ( x, y ) = � dy p ( x | y ) p ( y ) : • marginal density p ( x ) = Enter y ! • Bayes: p ( x | y )= p ( y | x ) p ( x ) p ( y | x ) p ( x ) p ( x | y ) ← p ( y | x ) , p ( x ) ! = dx p ( y | x ) p ( x ) : � p ( y ) ( x − y )2 2 πσ e − 1 1 2 σ 2 • certain knowledge on x : p ( x ) = δ ( x − y ) ‘ = ’ lim σ → 0 √ � dx p ( y, x ) = � dx p ( y | x ) p x ( x ) = • transformed RV y = t [ x ] : p ( y ) = � dx δ ( y − t [ x ]) p x ( x ) =: [ T p x ]( y ) ( T : p x �→ p , “transfer operator”) Sensor Data Fusion - Methods and Applications, 3rd Lecture on October 30, 2019 — slide 8

  9. The Multivariate G AUSS ian Pdf – wanted: probabilities ‘concentrated’ around a center x q ( x ) = 1 2 ( x − x ) P − 1 ( x − x ) ⊤ – quadratic distance: q ( x ) defines an ellipsoid around x , its volume and orien- tation being determined by a matrix P (symmetric: P ⊤ = P , positively definite: all eigenvalues > 0 ). � dx e − q ( x ) (normalized!) p ( x ) = e − q ( x ) / – first attempt: e − 1 1 2( x − x ) ⊤ P − 1 ( x − x ) p ( x ) = N ( x ; x , P ) = � | 2 π P | � Show: � dx e − q ( x ) = E [( x − x )( x − x ) ⊤ ] = P Exercise 3.2 | 2 π P | , E [ x ] = x , Trick: Symmetric, positively definite matrices can be diagonalized by an orthogonal coordinate transform. Sensor Data Fusion - Methods and Applications, 3rd Lecture on October 30, 2019 — slide 9

  10. The Multivariate G AUSS ian Pdf – wanted: probabilities ‘concentrated’ around a center x q ( x ) = 1 2 ( x − x ) P − 1 ( x − x ) ⊤ – quadratic distance: q ( x ) defines an ellipsoid around x , its volume and orien- tation being determined by a matrix P (symmetric: P ⊤ = P , positively definite: all eigenvalues > 0 ). � dx e − q ( x ) (normalized!) p ( x ) = e − q ( x ) / – first attempt: e − 1 1 2( x − x ) ⊤ P − 1 ( x − x ) p ( x ) = N ( x ; x , P ) = � | 2 π P | E [ x ] = x , E [( x − x )( x − x ) ⊤ ] = P (covariance) Sensor Data Fusion - Methods and Applications, 3rd Lecture on October 30, 2019 — slide 10

  11. The Multivariate G AUSS ian Pdf – wanted: probabilities ‘concentrated’ around a center x q ( x ) = 1 2 ( x − x ) P − 1 ( x − x ) ⊤ – quadratic distance: q ( x ) defines an ellipsoid around x , its volume and orien- tation being determined by a matrix P (symmetric: P ⊤ = P , positively definite: all eigenvalues > 0 ). � dx e − q ( x ) (normalized!) p ( x ) = e − q ( x ) / – first attempt: e − 1 1 2( x − x ) ⊤ P − 1 ( x − x ) p ( x ) = N ( x ; x , P ) = � | 2 π P | E [ x ] = x , E [( x − x )( x − x ) ⊤ ] = P (covariance) – Covariance Matrix: Expected error of the expectation. Sensor Data Fusion - Methods and Applications, 3rd Lecture on October 30, 2019 — slide 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend