cemracs 2015 daily morning seminar cirm luminy france
play

Cemracs 2015 - Daily morning seminar Cirm - Luminy - France The - PowerPoint PPT Presentation

Cemracs 2015 - Daily morning seminar Cirm - Luminy - France The Geometrical Gyro-Kinetic Approximation The Geometrical Gyro-Kinetic Approximation Emmanuel Frnod Introduction Methode summarize Emmanuel Frnod 1 Hamiltonian System


  1. Cemracs 2015 - Daily morning seminar Cirm - Luminy - France The Geometrical Gyro-Kinetic Approximation The Geometrical Gyro-Kinetic Approximation Emmanuel Frénod Introduction Methode summarize Emmanuel Frénod 1 Hamiltonian System August 11th 2015 Polar Coordinates Darboux Lie EP Inria Tonus CfP-WP14-ER-01/IPP-03 & CfP-WP15-ER/IPP-01 CfP-WP14-ER-01/Swiss Confederation-01 Joint work with Mathieu Lutz 1 LMBA (UMR 6205), Université de Bretagne-Sud, F-56017, Vannes, France. emmanuel.frenod@univ-ubs.fr http://web.univ-ubs.fr/lmam/frenod/index.html Emmanuel Frénod The Geometrical Gyro-Kinetic Approximation

  2. Charge particles submitted to Strong Magnetic Field The In Usual Coordinates : ( x , v ) = ( x 1 , x 2 , x 3 , v 1 , v 2 , v 3 ) Geometrical Gyro-Kinetic Approximation X ( t ; x , v , s ) , V ( t ; x , v , s ) Emmanuel Frénod Introduction Methode summarize ∂ X ∂ t = V Hamiltonian System ∂ V ∂ t = q Polar m ( E ( X ) + V × B ( X )) Coordinates Darboux Lie B : Self Induced Perturbations + Strong Applied piece � �� � � �� � Forgotten → 1 ε B ε ∼ Larmor Radius E : Self Induced piece � �� � Tokamak size Forgotten Emmanuel Frénod The Geometrical Gyro-Kinetic Approximation

  3. Helicoidal trajectories - Larmor Radius The Geometrical Gyro-Kinetic Approximation Emmanuel Frénod Introduction Methode summarize Hamiltonian System Polar Coordinates Darboux Lie Source: S. Jardin’s Lectures at Cemracs’10 In Tokamak: Electron Larmor Radius ∼ 5 · 10 − 4 m Ion Larmor Radius ∼ 10 − 2 m Emmanuel Frénod The Geometrical Gyro-Kinetic Approximation

  4. Dimensionless Dynamical System The Geometrical Gyro-Kinetic Approximation Emmanuel Frénod Introduction ∼ 10 − 2 m ε ∼ Ion Larmor Radius Methode ∼ 10 − 3 summarize Tokamak size 10 m Hamiltonian System Polar Coordinates ∂ X ∂ t = V Darboux Lie ∂ t = V × B ( X ) ∂ V ε Emmanuel Frénod The Geometrical Gyro-Kinetic Approximation

  5. Simplifications The Geometrical Gyro-Kinetic B ( x ) = ( 0 , 0 , B ( x 1 , x 2 )) Approximation Emmanuel B ( x 1 , x 2 ) = ∇ × A ( x 1 , x 2 ) = ∂ A 2 ( x 1 , x 2 ) − ∂ A 1 Frénod B > 1 , ( x 1 , x 2 ) ∂ x 1 ∂ x 2 Introduction Methode Turn to dimension 2: x = ( x 1 , x 2 ) , v = ( v 1 , v 2 ) summarize Hamiltonian ∂ X System ∂ t = V , X ( 0 ) = x 0 , Polar � V 2 � Coordinates ∂ V ∂ t = 1 ε B ( X ) ⊥ V = 1 Darboux ε B ( X ) V ( 0 ) = v 0 , − V 1 Lie     V 1     X 1 X 1 x 01   V 2         ∂ X 2 X 2 x 02 1          = , ( 0 ) = ε B ( X ) V 2        V 1 V 1 v 01 ∂ t   − 1 V 2 V 2 v 02 ε B ( X ) V 1 Emmanuel Frénod The Geometrical Gyro-Kinetic Approximation

  6. Gyrokinetic model The Geometrical Gyro-Kinetic Approximation Emmanuel Frénod Introduction Methode summarize ∂ Z ∂ t = − ε J Hamiltonian ⊥ ∇ B ( Z ) , System Z ( 0 ) = z 0 B ( Z ) Polar Coordinates Darboux   ∂ B Lie � Z 1 � ( Z ) ∂ = − ε J   ∂ x 2  , Z ( 0 ) = z 0  − ∂ B Z 2 ∂ t B ( Z ) ( Z ) ∂ x 1 for magnetic moment J Emmanuel Frénod The Geometrical Gyro-Kinetic Approximation

  7. What is hidden The Geometrical Gyro-Kinetic Approximation Emmanuel Frénod Introduction Methode ∂ t = − ε J ∂ Z ⊥ ∇ B ( Z ) , summarize Z ( 0 ) = z 0 B ( Z ) Hamiltonian System � B ( Z ) ∇ 2 B ( Z ) − 3 ( ∇ B (( Z ))) 2 � ∂ Γ ∂ t = B ( Z ) J Polar + ε , Γ( 0 ) = γ 0 Coordinates 2 B ( Z ) 2 ε Darboux ∂ J Lie ∂ t = 0 , J ( 0 ) = j 0 Emmanuel Frénod The Geometrical Gyro-Kinetic Approximation

  8. Key result The Geometrical Gyro-Kinetic IF: In coordinate system r = ( r 1 , r 2 , r 3 , r 4 ) , a Hamiltonian Dynamical Approximation System writes: Emmanuel Frénod     ∂ H Introduction  M ( r ) 0 0 ∂ r 1 Methode   0 0 ∂ H ∂ R   summarize   ∂ r 2 ∂ t = P ( R ) ∇ r H ( R ) P ( r ) =  0 0 0   c 0 Hamiltonian System 0 0 − c 0 ∂ H Polar ∂ r 4 Coordinates Darboux with ∂ H Lie = 0 ∂ r 3 ∂ M = ∂ M AND: ∂ R 4 THEN: = 0 ∂ t = 0 ∂ r 3 ∂ r 4 (Trajectory R = ( R 1 , R 2 , R 3 , R 4 ) ) Emmanuel Frénod The Geometrical Gyro-Kinetic Approximation

  9. Key result The Geometrical Gyro-Kinetic IF: In coordinate system r = ( r 1 , r 2 , r 3 , r 4 ) , a Hamiltonian Dynamical Approximation System writes: Emmanuel Frénod     ∂ H Introduction  M ( r ) 0 0 ∂ r 1 Methode   0 0 ∂ H ∂ R   summarize   ∂ r 2 ∂ t = P ( R ) ∇ r H ( R ) P ( r ) =  0 0 0   c 0 Hamiltonian System 0 0 − c 0 ∂ H Polar ∂ r 4 Coordinates Darboux with ∂ H Lie = 0 ∂ r 3 ∂ M = ∂ M AND: ∂ R 4 THEN: = 0 ∂ t = 0 ∂ r 3 ∂ r 4 (Trajectory R = ( R 1 , R 2 , R 3 , R 4 ) ) Emmanuel Frénod The Geometrical Gyro-Kinetic Approximation

  10. Key result The Geometrical Gyro-Kinetic IF: In coordinate system r = ( r 1 , r 2 , r 3 , r 4 ) , a Hamiltonian Dynamical Approximation System writes: Emmanuel Frénod     ∂ H Introduction  M ( r ) 0 0 ∂ r 1 Methode   0 0 ∂ H ∂ R   summarize   ∂ r 2 ∂ t = P ( R ) ∇ r H ( R ) P ( r ) =  0 0 0   c 0 Hamiltonian System 0 0 − c 0 ∂ H Polar ∂ r 4 Coordinates Darboux with ∂ H Lie = 0 ∂ r 3 ∂ M = ∂ M AND: ∂ R 4 THEN: = 0 ∂ t = 0 ∂ r 3 ∂ r 4 (Trajectory R = ( R 1 , R 2 , R 3 , R 4 ) ) Emmanuel Frénod The Geometrical Gyro-Kinetic Approximation

  11. Panorama The Usual Coordinates Geometrical Gyro-Kinetic ( x , v ) Approximation Polar Coordinates Emmanuel ( x , θ, v ) Frénod ∂ X 3 ∂ t = V Introduction ∂ t = 1 ∂ V Methode ε B ( X ) ⊥ V 4: Darboux Method summarize Hamiltonian System Darboux Almost 1: Hamiltonian? 2 Polar Canonical Coordinates Coordinates ( y , θ, v ) Darboux Canonical Coordinates Lie ( q , p ) 5: Lie Method H ε = ˘ ˘ H ε ( q , p ) : Lie Coordinates ∂ Q p ˘ ∂ t = ∇ H ε ( z , γ, j ) ∂ P q ˘ ∂ t = −∇ H ε Emmanuel Frénod The Geometrical Gyro-Kinetic Approximation

  12. Panorama The Usual Coordinates Geometrical ( x , v ) Gyro-Kinetic Approximation Polar Coordinates H ε ( x , v ) , P ε ( x , v ) s.t: Emmanuel   ( x , θ, v ) Frénod ∂ X 3   H ε ( v ) , � � Introduction ∂ t P ε ( x , θ, v )    = P ε ∇ x , v H ε  ∂ V Methode 4: Darboux Method summarize ∂ t Hamiltonian System Darboux Almost 1: Hamiltonian? 2 Polar Canonical Coordinates Coordinates ( y , θ, k ) Darboux Canonical Coordinates Lie H ε ( y , θ, k ) , P ε ( y ) ( q , p ) 5: Lie Method H ε ( q , p ) , ˘ ˘ P ε ( q , p )= S Lie Coordinates s.t:   ∂ Q ( z , γ, j )   ∂ t   q , p ˘ H ε ( z , j ) , � �  = S∇ H ε P ε ( z )  ∂ P = P ε ( z ) ∂ t Emmanuel Frénod The Geometrical Gyro-Kinetic Approximation

  13. Canonical Coordinates The Usual Coordinates : ( x , v ) = ( x 1 , x 2 , v 1 , v 2 ) Geometrical Gyro-Kinetic Trajectory : ( X ( t ; x , v , s ) , V ( t ; x , v , s )) ( ( X , V ) = ( X 1 , X 2 , V 1 , V 2 ) ) Approximation Emmanuel Frénod ∂ X ∂ t = V Introduction B ( x ) = ∇ × A ( x ) Methode ∂ t = 1 ∂ V summarize ε B ( X ) ⊥ V Hamiltonian System Canonical Coordinates : ( q , p ) = ( q 1 , q 2 , p 1 , p 2 ) Polar Coordinates Trajectory : ( Q ( t ; q , p , s ) , P ( t ; q , p , s )) ( ( Q , P ) = ( Q 1 , Q 2 , P 1 , P 2 ) ) Darboux Lie p = v + A ( x ) q = x , ε   � � ∂ Q H ε ( q , p ) = 1 � p − A ( q ) 2 � � ˘ �   ∂ t 2 ε   q , p ˘ � 0 �  = S∇ H ε  I 2 ∂ P S = − I 2 0 ∂ t Emmanuel Frénod The Geometrical Gyro-Kinetic Approximation

  14. Check of Canonical nature of Canonical Coordinates The   Geometrical ∂ Q Gyro-Kinetic � � Approximation   H ε ( q , p ) = 1 � p − A ( q ) 2 ∂ t � �   q , p ˘ ˘  = S∇ H ε , � Emmanuel  2 ε Frénod ∂ P Introduction ∂ t Methode ∂ Q H ε ( Q , P ) = P − A ( Q ) summarize p ˘ ∂ t = ∇ ε Hamiltonian System � � T H ε ( Q , P ) = ( ∇ A ( Q )) P − A ( Q ) ∂ P Polar q ˘ ∂ t = −∇ Coordinates ε ε Darboux T ( p − A ) = ( ∇ A )( p − A ) + ( ∇ × A ) ⊥ ( p − A ) Lie ( ∇ A ) ∂ t = P − A ( Q ) ∂ Q ε � � ⊥ � � ∂ P ∂ t − ( ∇ A ( Q )) P − A ( Q ) = ∇ × A ( Q ) P − A ( Q ) ε ε ε ε Emmanuel Frénod The Geometrical Gyro-Kinetic Approximation

  15. Check of Canonical nature of Canonical Coord. - 2 The Geometrical Gyro-Kinetic X = Q Approximation V = P − A ( Q ) Emmanuel ∂ Q ∂ t = P − A ( Q ) Frénod ε Introduction ε � � ⊥ � � Methode ∂ P ∂ t − ( ∇ A ( Q )) P − A ( Q ) = ∇ × A ( Q ) P − A ( Q ) summarize ε ε ε ε Hamiltonian System ∂ X ∂ t = V Polar � � Coordinates P − A ( Q ) � ∂ Q � ⊥ � � ∂ Darboux ∂ P ∂ t − ( ∇ A ( Q )) = ∇ × A ( Q ) P − A ( Q ) ε = Lie ε ∂ t ∂ t ε ε ∂ X ∂ t = V ∂ V ∂ t = ∇ × A ( X ) ⊥ V ε Emmanuel Frénod The Geometrical Gyro-Kinetic Approximation

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend