a non newtonian rheology model application to complex
play

A Non-Newtonian rheology model application to complex flows - PowerPoint PPT Presentation

A Non-Newtonian rheology model application to complex flows (PyroClast) Khawla Msheik, Meissa MBaye, Duc Nguyen Supervisor: Francois James CEMRACS 2019 Luminy, August 22, 2019. Khawla, Meissa, Duc CEMRACS 2019 1 / 17 Outline Motivation


  1. A Non-Newtonian rheology model application to complex flows (PyroClast) Khawla Msheik, Meissa M’Baye, Duc Nguyen Supervisor: Francois James CEMRACS 2019 Luminy, August 22, 2019. Khawla, Meissa, Duc CEMRACS 2019 1 / 17

  2. Outline Motivation Newtonian fluid (Known model) Lubrication approximation Lubrication model Numerical results Bingham fluid (Known model) Navier-Stokes model for Bingham fluid Lubrication model Numerical results Two viscosities model (New model) Two-viscosities model for pseudo-viscoplastic fluid Lubrication model Numerical results Khawla, Meissa, Duc CEMRACS 2019 2 / 17

  3. Motivation Bingham Shear stress | τ | Newtonian pseudoplastic Shear rate | Dv | Pyroclast flow (Source: Internet) Rheology - types Idea: To approximate the pseudo-plastic rheology by a piecewise affine function. Khawla, Meissa, Duc CEMRACS 2019 3 / 17

  4. Main features H / L ≪ 1 Lubrication approximation Rheology - type (Stress-Strain relation). Newtonian fluid : Water, oil,.... Bingham fluid Two - viscosities model: "Pseudo-viscoplastic fluid" Navier-Stokes model L w u H z h x Khawla, Meissa, Duc CEMRACS 2019 4 / 17

  5. Newtonian fluid Navier-Stokes model u x + w z = 0 ρ ( u t + uu x + wu z ) = − p x + 2 µ u xx + µ u zz + µ w xz ρ ( w t + uw x + ww z ) = − p z + µ u xz + µ w zz + 2 µ w zz − ρ g Boundary condition u = w = 0 z = 0 ( 1 − h 2 x ) p + 2 µ ( 1 + h x ) 2 u x = 0 z = h ( x , t ) ( 1 − h 2 x )( u z + w x ) − 4 h x u x = 0 z = h ( x , t ) Kinematic condition h t + uh x = w z = h ( x , t ) Khawla, Meissa, Duc CEMRACS 2019 5 / 17

  6. Lubrication Method Scale independent x = L ˜ z = H ˜ u = U ˜ x , z , u Scale dependent t = L w = H h = H ˜ ˜ LU ˜ p = ρ gH ˜ h , t , w , ρ U Fr 2 = U 2 ε = H Re = ρ HU L , gH , µ Dimentionless equation ε Re ( u t + uu x + wu z ) = − ε Re Fr 2 p x + 2 ε 2 µ u xx + u zz + ε 2 w xz ε 3 Re ( w t + uw x + ww z ) = − ε Re Fr 2 p z + ε 4 µ w xx + ε 2 u xz + 2 ε 2 w zz − 1 Khawla, Meissa, Duc CEMRACS 2019 6 / 17

  7. Lubrication model Limit problem u x + w z = 0 , p x = u zz , p z = − 1 Boundary condition u = w = 0 z = 0 p = u z = 0 z = h ( x , t ) Kinematic condition h t + uh x = w z = h ( x , t ) Lubrication model � h 3 � = 0 h t − ∂ x 3 h x Khawla, Meissa, Duc CEMRACS 2019 7 / 17

  8. Numerical results Method 1: � 3 H R − H L � H L + H R F ( H l , H r ) = − 3 ∆ x 2 Method 2: F ( H l , H r ) = ( H L − H R )( H 3 L + H 3 − | H L − H R | max( H 2 L , H 2 R ) R )( H R − H L ) 6 ∆ x 2 ∆ x Khawla, Meissa, Duc CEMRACS 2019 8 / 17

  9. Bingham fluid v = ( u , w ) T � τ xx � τ xz Dv = ∇ v + ∇ v T τ = , 2 τ xz τ zz Laws of behavior Newtonian fluid Bingham fluid  τ = 2 µ Dv | τ | < Bi Dv = 0 solid    τ = Dv + Bi Dv  Dv � 0 fluid   | Dv | Limit problem Newtonian fluid Bingham fluid √ p x = u zz      1 + Bi 2 p x = 2 ∂ z τ xz = ∂ z      u z             | u z |   Khawla, Meissa, Duc CEMRACS 2019 9 / 17

  10. Lubrication model - Numerical results � h x Y 2 � h t − ∂ x [ 3 h − Y ] = 0 6 √    h − Bi 2   Y = max | h x | , 0        Remark: Bi = 0 Bingham → Newtonian Bi = 0 . 5 Bi = 2 nx = 128 Khawla, Meissa, Duc CEMRACS 2019 10 / 17

  11. Numerical results - Slump test Bi = 2 Bi = 1 . 25 Bi = 0 . 5 Khawla, Meissa, Duc CEMRACS 2019 11 / 17

  12. Two-viscosities model  τ ∗ 2 µ 1 Dv | Dv | ≤ high viscosity  2 µ 1  τ =  � 1 − µ 2 � τ ∗ τ ∗ Dv 2 µ 2 Dv +  | Dv | > low viscosity   µ 1 | Dv | 2 µ 1 µ 2 = µ 1 µ 1 → + ∞  τ = 2 µ 1 Dv | τ | < τ ∗ | Dv | ≤ 0   τ =  2 µ 2 Dv + τ ∗ Dv  | Dv | > 0   | Dv | Newtonian fluid Bingham fluid | τ | µ 2 → µ 1 µ 1 → ∞ µ 2 τ ∗ µ 1 τ ∗ | Dv | 2 µ 1 Khawla, Meissa, Duc CEMRACS 2019 12 / 17

  13. Two-viscosities model high viscosity, u 1 h h ∗ low viscosity, u 2 Difficulty Resolving Induce unknown interface h ∗ Choice of scaling + constraint on | Du | 1 1 Identify BC at interface h ∗ Preserve continuity of u and τ 2 2 Scale the viscosity: µ i = α i µ 3 Khawla, Meissa, Duc CEMRACS 2019 13 / 17

  14. Lubrication model Two-viscosities model � 1 � h ∗ 3 − h 3 � � h ∗ 3 3 − Yh ∗ 2 + Yhh ∗ − hh ∗ 2 + h 2 h ∗ − hh ∗ 2 �� � − 1 � ∂ t h − ∂ x h x = 0 µ 2 2 2 µ 1 3 � √ √     � 2 B 2 B 1 − µ 2 h ∗ = max     Y = max  h − | h x | , 0  ,  h − | h x | , 0             µ 1  µ 2 = µ 1 µ 1 → + ∞ � h x Y 2 � [ 3 h − Y ] = 0 h t − ∂ x � h 3 � 6 ∂ t h − ∂ x 3 h x = 0 √    h − Bi 2   Y = max | h x | , 0       Newtonian fluid  Bingham fluid Khawla, Meissa, Duc CEMRACS 2019 14 / 17

  15. Numerical results µ 2 = µ 1 µ 1 = 1000 ≫ µ 2 Newtonian fluid Bingham fluid Khawla, Meissa, Duc CEMRACS 2019 15 / 17

  16. Slump test for two-viscosities fluid Khawla, Meissa, Duc CEMRACS 2019 16 / 17

  17. Thanks CEMRACS, 2019 Khawla, Meissa, Duc CEMRACS 2019 17 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend