on the road to navier stokes
play

On the road to Navier-Stokes Yohan Penel Team ANGE (CEREMA, Inria, - PowerPoint PPT Presentation

On the road to Navier-Stokes Yohan Penel Team ANGE (CEREMA, Inria, UPMC, CNRS) Project leader: Cindy Guichard (UPMC) COmplex Rheology SURface Flows Carg` ese June, 1st. 2017 1. Project 2. Settings 3. Derivation of the hierarchy of


  1. On the road to Navier-Stokes Yohan Penel Team ANGE (CEREMA, Inria, UPMC, CNRS) Project leader: Cindy Guichard (UPMC) COmplex Rheology SURface Flows Carg` ese – June, 1st. 2017

  2. 1. Project 2. Settings 3. Derivation of the hierarchy of models 4. Rheology 5. Conclusion Outline Project 1 Settings 2 Derivation of the hierarchy of models 3 Rheology 4 Conclusion 5 2 / 25 Yohan Penel (ANGE) CORSURF / / - :

  3. 1. Project 2. Settings 3. Derivation of the hierarchy of models 4. Rheology 5. Conclusion Description Project leader : Cindy Guichard Funding : 8000 e Members : ❧ Marie-Odile Bristeau (Inria Paris) ❧ Enrique Fern´ andez-Nieto (Spain, Univ. Sevilla) ❧ Anne Mangeney (IPGP) ❧ Bernard di Martino (Univ. Corse, ANGE) ❧ Martin Parisot (Inria) ❧ Yohan Penel (CEREMA) ❧ Jacques Sainte-Marie (CEREMA) 3 / 25 Yohan Penel (ANGE) CORSURF / / - :

  4. 1. Project 2. Settings 3. Derivation of the hierarchy of models 4. Rheology 5. Conclusion Achievements Workshop : ❧ Complex rheology of granular flows: barriers, challenges and deadlocks ❧ October, 13th-14th 2016 ❧ 30 participants, 4 speakers (C. Ancey, E. Lemaire, G. Ovarlez, J. Weiss) Articles : M.-O. Bristeau, C. Guichard, B. di Martino, J. Sainte-Marie, Layer-averaged Euler and Navier-Stokes equations ( Comm. Math. Sci. , to appear) E. Fern´ andez-Nieto, M. Parisot, Y. Penel, J. Sainte-Marie, A hierarchy of non-hydrostatic layer-averaged approximations of Euler equations for free surface flows (submitted) 4 / 25 Yohan Penel (ANGE) CORSURF / / - :

  5. 1. Project 2. Settings 3. Derivation of the hierarchy of models 4. Rheology 5. Conclusion Literature about free-surface flows Free-surface incompressible Euler equations 5 / 25 Yohan Penel (ANGE) CORSURF / / - :

  6. 1. Project 2. Settings 3. Derivation of the hierarchy of models 4. Rheology 5. Conclusion Literature about free-surface flows Hydrostatic pressure Free-surface Shallow water incompressible Shallow water assumption equations Euler equations Homogeneous velocity A. Barr´ e de Saint-Venant, Th´ eorie du mouvement non permanent des eaux, avec application aux crues des rivi` eres et ` a l’introduction des mar´ ees dans leurs lits ( C. R. Acad. Sci. 73, 1871) J.-F. Gerbeau, B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation ( Discrete Contin. Dyn. Syst. Ser. B 1(1), 2001) S. Ferrari, F. Saleri, A new two-dimensional Shallow Water model including pressure effects and slow varying bottom topography ( Math. Model. Numer. Anal. 38(2), 2004) F. Marche, Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects ( Eur. J. Mech. B Fluids 26(1), 2007) 5 / 25 Yohan Penel (ANGE) CORSURF / / - :

  7. 1. Project 2. Settings 3. Derivation of the hierarchy of models 4. Rheology 5. Conclusion Literature about free-surface flows ❤❤❤❤❤❤❤❤ Hydrostatic pressure ❤ Free-surface Shallow water incompressible Shallow water assumption equations Euler equations Homogeneous velocity F. Serre, Contribution ` a l’´ etude des ´ ecoulements permanents et variables dans les canaux ( La Houille Blanche 6, 1953) A.E. Green, P.M. Naghdi, A derivation of equations for wave propagation in water of variable depth ( J. Fluid Mech. 78(2), 1976) M.-O. Bristeau, J. Sainte-Marie, Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems ( Discrete Contin. Dyn. Syst. Ser. B 10(4), 2008) D. Lannes, P. Bonneton, Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation ( Phys. Fluids 21(1), 2009) Peregrine ’67, Madsen et al. ’91 ’96 ’03 ’06, Nwogu ’93, Casulli et al. ’95 ’99, Yamazaki et al. ’09, . . . 5 / 25 Yohan Penel (ANGE) CORSURF / / - :

  8. 1. Project 2. Settings 3. Derivation of the hierarchy of models 4. Rheology 5. Conclusion Literature about free-surface flows Hydrostatic pressure Free-surface Shallow water ❤❤❤❤❤❤❤❤❤ incompressible Shallow water assumption equations Euler equations ❤ ❤❤❤❤❤❤❤❤ Homogeneous velocity ❤ E. Audusse, M.-O. Bristeau, B. Perthame, J. Sainte-Marie, A multilayer Saint-Venant system with mass exchanges for Shallow Water flows. Derivation and numerical validation ( Math. Model. Numer. Anal. 45(1), 2011) F. Bouchut, V. Zeitlin, A robust well-balanced scheme for multi-layer shallow water equations ( Discrete Contin. Dyn. Syst. Ser. B 13(4), 2010) E.D. Fern´ andez-Nieto, E.H. Kon´ e, T. Morales de Luna, R. B¨ urger, A multilayer shallow water system for polydisperse sedimentation ( J. Comput. Phys. 238, 2013) Castro et al. ’01 ’04 ’10, Narbona et al. ’09 ’13, . . . 5 / 25 Yohan Penel (ANGE) CORSURF / / - :

  9. 1. Project 2. Settings 3. Derivation of the hierarchy of models 4. Rheology 5. Conclusion Literature about free-surface flows ❤❤❤❤❤❤❤❤ Hydrostatic pressure ❤ Free-surface Shallow water ❤❤❤❤❤❤❤❤❤ incompressible Shallow water assumption equations Euler equations ❤ ❤❤❤❤❤❤❤❤ Homogeneous velocity ❤ Derivation of multilayer non-hydrostatic models M. Zijlema, G.S. Stelling, Further experiences with computing non-hydrostatic free-surface flows involving water waves ( Int. J. Numer. Methods Fluids 48(2), 2005) Y. Bai, K.F. Cheung, Dispersion and nonlinearity of multi-layer non-hydrostatic free-surface flow ( J. Fluid Mech. 726, 2013) 5 / 25 Yohan Penel (ANGE) CORSURF / / - :

  10. 1. Project 2. Settings 3. Derivation of the hierarchy of models 4. Rheology 5. Conclusion Fluid domain z z = η ( t , x ) u = ( u , w ) H ( t , x ) z = z b ( x ) x Water height: H ( t , x ) = η ( t , x ) − z b ( x ) 6 / 25 Yohan Penel (ANGE) CORSURF / / - :

  11. 1. Project 2. Settings 3. Derivation of the hierarchy of models 4. Rheology 5. Conclusion Euler equations Model   ∂ x u + ∂ z w = 0  ∂ t u + ∂ x ( u 2 + p ) + ∂ z ( uw ) = 0   ∂ t w + ∂ x ( uw ) + ∂ z ( w 2 + p ) = − g � ( x , z ) ∈ R 2 � � � z b ( x ) ≤ z ≤ η ( t , x ) set in the domain Ω( t ) = Boundary conditions � � � � ∂ t η ( t , x ) + u t , x , η ( t , x ) ∂ x η ( t , x ) − w t , x , η ( t , x ) = 0 � � = p atm ( t , x ) p t , x , η ( t , x ) � � � � z ′ u t , x , z b ( x ) b ( x ) − w t , x , z b ( x ) = 0 together with well-prepared initial conditions � � Pressure fields p ( t , x , z ) = p atm ( t , x ) + g η ( t , x ) − z + q ( t , x , z ) 7 / 25 Yohan Penel (ANGE) CORSURF / / - :

  12. 1. Project 2. Settings 3. Derivation of the hierarchy of models 4. Rheology 5. Conclusion Euler equations Model   ∂ x u + ∂ z w = 0  ∂ t u + ∂ x ( u 2 + q ) + ∂ z ( uw ) = − ∂ x ( g η + p atm )   ∂ t w + ∂ x ( uw ) + ∂ z ( w 2 + q ) = 0 � ( x , z ) ∈ R 2 � � � z b ( x ) ≤ z ≤ η ( t , x ) set in the domain Ω( t ) = Boundary conditions � � � � ∂ t η ( t , x ) + u t , x , η ( t , x ) ∂ x η ( t , x ) − w t , x , η ( t , x ) = 0 � � q t , x , η ( t , x ) = 0 � � � � z ′ u t , x , z b ( x ) b ( x ) − w t , x , z b ( x ) = 0 together with well-prepared initial conditions 7 / 25 Yohan Penel (ANGE) CORSURF / / - :

  13. 1. Project 2. Settings 3. Derivation of the hierarchy of models 4. Rheology 5. Conclusion Multilayer framework z z = η ( t , x ) = z L +1 / 2 ( t , x ) z = z α +1 / 2 ( t , x ) H ( t , x ) h α ( t , x ) z = z α − 1 / 2 ( t , x ) z = z b ( x ) = z 1 / 2 ( x ) x Height decomposition: h α ( t , x ) = ℓ α H ( t , x ) with ℓ α ∈ (0 , 1) and � L α =1 ℓ α = 1 8 / 25 Yohan Penel (ANGE) CORSURF / / - :

  14. 1. Project 2. Settings 3. Derivation of the hierarchy of models 4. Rheology 5. Conclusion Multilayer framework z z = η ( t , x ) = z L +1 / 2 ( t , x ) z = z α +1 / 2 ( t , x ) H ( t , x ) h α ( t , x ) z = z α − 1 / 2 ( t , x ) z = z b ( x ) = z 1 / 2 ( x ) x Height decomposition: h α ( t , x ) = ℓ α H ( t , x ) with ℓ α ∈ (0 , 1) and � L α =1 ℓ α = 1 Homogeneous mesh: ℓ α = 1 L 8 / 25 Yohan Penel (ANGE) CORSURF / / - :

  15. 1. Project 2. Settings 3. Derivation of the hierarchy of models 4. Rheology 5. Conclusion Multilayer framework z z = η ( t , x ) = z L +1 / 2 ( t , x ) z = z α +1 / 2 ( t , x ) H ( t , x ) h α ( t , x ) z = z α − 1 / 2 ( t , x ) z = z b ( x ) = z 1 / 2 ( x ) x Notations � ] α +1 / 2 = f + α +1 / 2 − f − f α +1 / 2 = γ α +1 / 2 f − α +1 / 2 + (1 − γ α +1 / 2 ) f + [ [ f ] α +1 / 2 , α +1 / 2 8 / 25 Yohan Penel (ANGE) CORSURF / / - :

  16. 1. Project 2. Settings 3. Derivation of the hierarchy of models 4. Rheology 5. Conclusion Multilayer framework z z = η ( t , x ) = z L +1 / 2 ( t , x ) z = z α +1 / 2 ( t , x ) H ( t , x ) h α ( t , x ) z = z α − 1 / 2 ( t , x ) z = z b ( x ) = z 1 / 2 ( x ) x Notations � z α +1 / 2 ( t , x ) 1 � f � α ( t , x ) = f ( t , x , z ) d z h α ( t , x ) z α − 1 / 2 ( t , x ) 8 / 25 Yohan Penel (ANGE) CORSURF / / - :

  17. 1. Project 2. Settings 3. Derivation of the hierarchy of models 4. Rheology 5. Conclusion Multilayer framework z z = η ( t , x ) = z L +1 / 2 ( t , x ) z = z α +1 / 2 ( t , x ) H ( t , x ) h α ( t , x ) z = z α − 1 / 2 ( t , x ) z = z b ( x ) = z 1 / 2 ( x ) x Notations n α +1 / 2 = ( − ∂ x z α +1 / 2 , 1) T 8 / 25 Yohan Penel (ANGE) CORSURF / / - :

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend