perturbation theory ch 6
play

Perturbation theory (Ch. 6) (time-independent, nondegenerate, Sec. - PowerPoint PPT Presentation

EE201/MSE207 Lecture 15 Perturbation theory (Ch. 6) (time-independent, nondegenerate, Sec. 6.1) Usually solving TISE = is too complicated; need approximations. Perturbation theory is one of approximate methods to solve TISE.


  1. EE201/MSE207 Lecture 15 Perturbation theory (Ch. 6) (time-independent, nondegenerate, Sec. 6.1) Usually solving TISE πΌπœ” = πΉπœ” is too complicated; need approximations. Perturbation theory is one of approximate methods to solve TISE. Idea: separate Hamiltonian into simple and small parts (if possible) 𝐼 = 𝐼 0 + 𝐼 0 πœ” = πΉπœ” is simple (can be solved), 𝐼 1 𝐼 1 is small where 𝐼 = 𝐼 0 + πœ‡ 𝐼 1 then power series in πœ‡ β‰ͺ 1 , and then πœ‡ = 1 Trick: (0) + πœ‡πœ” π‘œ (1) + πœ‡ 2 πœ” π‘œ (2) + . . . πœ” π‘œ = πœ” π‘œ notation πœ” = |πœ”βŒͺ (0) + πœ‡πΉ π‘œ (1) + πœ‡ 2 𝐹 π‘œ (2) + . . . 𝐹 π‘œ = 𝐹 π‘œ 0 + πœ‡πœ” π‘œ 1 + . . . ) = (𝐹 π‘œ 0 + πœ‡πΉ π‘œ 1 + . . . )(πœ” π‘œ 0 + πœ‡πœ” π‘œ 1 + . . . ) 𝐼 0 + πœ‡ 𝐼 1 (πœ” π‘œ 0 = 𝐹 π‘œ 0 πœ” π‘œ 0 . . . order πœ‡ 0 : 𝐼 0 πœ” π‘œ order πœ‡ 2 : (solvable exactly) . . . 1 + 0 = 𝐹 π‘œ 0 πœ” π‘œ 1 + 𝐹 π‘œ 1 πœ” π‘œ order πœ‡ 3 : 0 order πœ‡ 1 : 𝐼 0 πœ” π‘œ 𝐼 1 πœ” π‘œ . . .

  2. First-order perturbation theory ( πœ‡ 1 ) 1 + 0 = 𝐹 π‘œ 0 πœ” π‘œ 1 + 𝐹 π‘œ 1 πœ” π‘œ 0 𝐼 0 πœ” π‘œ 𝐼 1 πœ” π‘œ βˆ— ∞ 𝑒𝑦 , or (the same) βŒ©πœ” π‘œ 0 𝑦 0 |. . . Multiply by πœ” π‘œ and integrate, βˆ’βˆž 1 βŒͺ + βŒ©πœ” π‘œ 0 | 0 βŒͺ = 𝐹 π‘œ 0 βŒ©πœ” π‘œ 0 |πœ” π‘œ 1 βŒͺ + 𝐹 π‘œ (0) | 1 βŒ©πœ” π‘œ 𝐼 0 |πœ” π‘œ 𝐼 1 |πœ” π‘œ equal notation πœ” 1 𝐼 πœ” 2 = βŒ©πœ” 1 | 𝐼 πœ” 2 βŒͺ 1 = βŒ©πœ” π‘œ 0 | 0 βŒͺ 𝐹 π‘œ 𝐼 1 |πœ” π‘œ First-order correction to energy is just the average (expectation) value of 𝐼 1 in the unperturbed state (very natural)

  3. First-order perturbation theory (cont.) 1 + 0 = 𝐹 π‘œ 0 πœ” π‘œ 1 + 𝐹 π‘œ 1 πœ” π‘œ 0 𝐼 0 πœ” π‘œ 𝐼 1 πœ” π‘œ (1) to wavefunction Now find correction πœ” π‘œ 0 ) πœ” π‘œ 1 = βˆ’( (1) ) πœ” π‘œ 0 ( 𝐼 0 βˆ’ 𝐹 π‘œ 𝐼 1 βˆ’πΉ π‘œ Rewrite (1) = π‘›β‰ π‘œ 𝑑 𝑛 (π‘œ) πœ” 𝑛 (π‘œ) = 0 (0) πœ” π‘œ 𝑑 π‘œ Expand in zero-order eigenstates from normalization (0) βˆ’ 𝐹 π‘œ (π‘œ) πœ” 𝑛 0 ) 𝑑 𝑛 0 = βˆ’( (1) ) πœ” π‘œ 0 π‘›β‰ π‘œ (𝐹 𝑛 𝐼 1 βˆ’πΉ π‘œ 0 βˆ’ 𝐹 π‘œ 0 ) 𝑑 π‘š π‘œ = βˆ’ πœ” π‘š 1 πœ€ π‘šπ‘œ 0 0 (0) | : (𝐹 π‘š 𝐼 1 πœ” π‘œ + 𝐹 π‘œ Multiply by βŒ©πœ” π‘š (1) (another way of derivation) For π‘œ = π‘š we obtain the previous formula for 𝐹 π‘œ 0 0 π‘œ = πœ” π‘š 𝐼 1 πœ” π‘œ For π‘œ β‰  π‘š : 𝑑 π‘š 0 βˆ’ 𝐹 π‘š 0 𝐹 π‘œ 0 0 πœ” 𝑛 𝐼 1 πœ” π‘œ (1) = (0) πœ” π‘œ πœ” 𝑛 0 βˆ’ 𝐹 𝑛 0 Rename π‘š β†’ 𝑛 𝐹 π‘œ π‘›β‰ π‘œ

  4. First-order perturbation theory: summary 𝐼 = 𝐼 0 + 𝐼 1 1 = βŒ©πœ” π‘œ 0 | 0 βŒͺ 𝐹 π‘œ 𝐼 1 |πœ” π‘œ 0 = 𝐹 π‘œ 0 πœ” π‘œ 0 𝐼 0 πœ” π‘œ (0) + πœ” π‘œ (1) + … 0 0 πœ” 𝑛 𝐼 1 πœ” π‘œ πœ” π‘œ = πœ” π‘œ (1) = (0) πœ” π‘œ πœ” 𝑛 0 βˆ’ 𝐹 𝑛 0 (0) + 𝐹 π‘œ (1) + … 𝐹 π‘œ 𝐹 π‘œ = 𝐹 π‘œ π‘›β‰ π‘œ (0) = 𝐹 π‘œ (0) (i.e. when degeneracy). Then Remark. Correction to πœ” π‘œ is not good if 𝐹 𝑛 the formalism is a little different. Usually degeneracy is lifted (disappears) due to perturbation. For example, in hydrogen atom there is fine structure (due to relativistic correction and spin-orbit) and hyperfine structure (due to magnetic interaction of electron and proton). Second-order perturbation: similar but lengthier 2 Result for second-order correction 0 0 πœ” 𝑛 𝐼 1 πœ” π‘œ (2) = to energy of n th level: 𝐹 π‘œ 0 βˆ’ 𝐹 𝑛 0 𝐹 π‘œ π‘›β‰ π‘œ

  5. WKB approximation (Ch. 8) (Wentzel, Kramers, Brillouin, 1926) βˆ’ ℏ 2 𝑒 2 πœ” 𝑦 𝐹 can be discrete + π‘Š 𝑦 πœ” 𝑦 = 𝐹 πœ”(𝑦) 𝑒𝑦 2 2𝑛 or continuous If π‘Š 𝑦 = const , then easy to solve If π‘Š 𝑦 varies slowly, then modify solution for π‘Š 𝑦 = const . Idea: Two cases: 𝐹 > π‘Š(𝑦) (classical region) 𝐹 < π‘Š(𝑦) (tunneling)

  6. WKB approximation, classical region, 𝐹 > π‘Š(𝑦) 2𝑛(𝐹 βˆ’ π‘Š) If π‘Š 𝑦 = const = π‘Š , then πœ” 𝑦 = 𝐡 𝑓 ±𝑗𝑙𝑦 , 𝑙 = ℏ 𝑦 𝑙 𝑦 β€² 𝑒𝑦 β€² Then for π‘Š(𝑦) we expect πœ” 𝑦 β‰ˆ 𝐡 𝑦 exp ±𝑗 2𝑛 πœ” π‘’πœ” βˆ— 𝐾 = 𝑗ℏ 𝑒𝑦 βˆ’ πœ” βˆ— π‘’πœ” From conservation of the probability current 𝑒𝑦 1 𝐡 𝑦 ∝ we obtain Therefore 𝑙(𝑦) 𝑦 πœ” 𝑦 β‰ˆ const 𝑙 𝑦 β€² 𝑒𝑦 β€² 2𝑛[𝐹 βˆ’ π‘Š 𝑦 ] exp ±𝑗 𝑙(𝑦) = 𝑙 𝑦 ℏ 𝑗 slightly different in the textbook, Β± ℏ π‘ž 𝑦 𝑒𝑦 𝑀 𝑦 , so πœ” 2 ∝ Remark 1. 1 𝑙(𝑦) ∝ 1 1 𝑀(𝑦) , as it should be. Remark 2. If 𝑛(𝑦) (as in SiGe technology), then 𝐡(𝑦) ∝ 𝑛(𝑦) 𝑙(𝑦) . Remark 3. WKB approximation works well only for slowly changing π‘Š(𝑦) .

  7. WKB approximation, tunneling, 𝐹 < π‘Š(𝑦) 2𝑛(π‘Š βˆ’ 𝐹) If π‘Š 𝑦 = const = π‘Š , then πœ” 𝑦 = 𝐡 𝑓 Β±πœ‡π‘¦ , πœ‡ = ℏ Similarly 𝑦 πœ” 𝑦 β‰ˆ const πœ‡ 𝑦 β€² 𝑒𝑦 β€² 2𝑛[π‘Š 𝑦 βˆ’ 𝐹] exp Β± πœ‡(𝑦) = πœ‡ 𝑦 ℏ WKB approximation is often used to estimate probability of tunneling (coefficient of transmission) through a strong (almost β€œopaque”) tunnel barrier π‘Š(𝑦) Tunneling probability πœ” π‘—π‘œ πœ” 𝑝𝑣𝑒 πœ” out 2 πœ” in 2 π‘ˆ ≃ 𝐹 π‘ˆ β‹˜ 1 𝑏 πœ‡ 𝑦 𝑒𝑦) 0 π‘ˆ ≃ exp(βˆ’2 𝑏 0 (very crudely; we neglect all pre-exponential factors, which usually are within one order of magnitude, while exponential factor can typically be 10 βˆ’3 βˆ’ 10 βˆ’10 )

  8. WKB, connection between the two regions assume smooth π‘Š(𝑦) 𝐹 (different result for an abrupt potential) π‘Š(𝑦) 𝑦 0 (classical turning point) WKB approximation does not work well in the vicinity of 𝑦 0 , we need a better approximation near 𝑦 0 (linear potential, Airy functions). Result: 𝑦 𝐷 πœ‡ 𝑦 β€² 𝑒𝑦′ , exp βˆ’ 𝑦 > 𝑦 0 πœ‡(𝑦) 𝑦 0 πœ” 𝑦 β‰ˆ 𝑦 0 2 𝐷 sin 𝜌 𝑙 𝑦 β€² 𝑒𝑦′ , 4 + 𝑦 < 𝑦 0 𝑙(𝑦) 𝑦

  9. Variational principle (Ch. 7) Only Sec. 7.1 Theorem: For an arbitrary |πœ”βŒͺ , the ground state energy 𝐹 𝑕 satisfies inequality 𝐹 𝑕 ≀ πœ” 𝐼 πœ” = 〈 𝐼βŒͺ Proof is simple. Let us expand πœ” = π‘œ 𝑑 π‘œ |πœ” π‘œ βŒͺ . Then since 𝐹 π‘œ β‰₯ 𝐹 𝑕 , we get 𝐼 = π‘œ 𝑑 π‘œ 2 𝐹 π‘œ β‰₯ 𝐹 𝑕 π‘œ 𝑑 π‘œ 2 = 𝐹 𝑕 This theorem can be useful to estimate 𝐹 𝑕 (or at least to find an upper bound) Idea: Use trial wavefunctions |πœ”βŒͺ with many adjustable parameters and minimize 〈 𝐼βŒͺ . Hopefully min 〈 𝐼βŒͺ is close to 𝐹 𝑕 . Extensions of this method can also be used to find |πœ” 𝑕 βŒͺ , first-excited state energy and wavefunction (using subspace orthogonal to |πœ” 𝑕 βŒͺ ), second-excited state, etc.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend