backward perturbation analysis
play

Backward Perturbation Analysis for Scaled Total Least Squares - PowerPoint PPT Presentation

Backward Perturbation Analysis Backward Perturbation Analysis for Scaled Total Least Squares Problems David Titley-P eloquin Joint work with Xiao-Wen Chang and Chris Paige McGill University, School of Computer Science Research supported by


  1. Backward Perturbation Analysis Backward Perturbation Analysis for Scaled Total Least Squares Problems David Titley-P´ eloquin Joint work with Xiao-Wen Chang and Chris Paige McGill University, School of Computer Science Research supported by NSERC Computational Methods with Applications Harrachov, 2007 CMA Harrachov 2007 — 1 of 27

  2. Backward Perturbation Analysis > Outline Outline The scaled total least squares problem Backward perturbation analysis A pseudo-minimal backward error µ A lower bound for µ An asymptotic estimate for µ Numerical experiments and conclusion CMA Harrachov 2007 — 2 of 27

  3. Backward Perturbation Analysis > Notation Notation Matrices: A , ∆ A , E , . . . Vectors: b , ∆ b , f , . . . Scalars: γ , β , ξ , . . . CMA Harrachov 2007 — 3 of 27

  4. Backward Perturbation Analysis > Notation Notation Matrices: A , ∆ A , E , . . . Vectors: b , ∆ b , f , . . . Scalars: γ , β , ξ , . . . Vector norms: � v � 2 2 ≡ v T v � A � 2 F ≡ trace( A T A ) Matrix norms: � A � 2 ≡ σ max ( A ), CMA Harrachov 2007 — 3 of 27

  5. Backward Perturbation Analysis > Notation Notation Matrices: A , ∆ A , E , . . . Vectors: b , ∆ b , f , . . . Scalars: γ , β , ξ , . . . Vector norms: � v � 2 2 ≡ v T v � A � 2 F ≡ trace( A T A ) Matrix norms: � A � 2 ≡ σ max ( A ), σ min ( A ) : smallest singular value of A λ min ( A ) : smallest eigenvalue of (real symmetric) A A † : Moore-Penrose generalized inverse of A (for a non-zero vector v † = v T / � v � 2 2 ) CMA Harrachov 2007 — 3 of 27

  6. Backward Perturbation Analysis > The scaled total least squares problem Outline The scaled total least squares problem Backward perturbation analysis A pseudo-minimal backward error µ A lower bound for µ An asymptotic estimate for µ Numerical experiments and conclusion CMA Harrachov 2007 — 4 of 27

  7. Backward Perturbation Analysis > The scaled total least squares problem The scaled total least squares problem Given A ∈ R m × n and b ∈ R m , the least squares problem is � � � f � 2 min 2 : Ax = b + f f , x CMA Harrachov 2007 — 5 of 27

  8. Backward Perturbation Analysis > The scaled total least squares problem The scaled total least squares problem Given A ∈ R m × n and b ∈ R m , the least squares problem is � � � f � 2 min 2 : Ax = b + f f , x The scaled total least squares (STLS) problem is � � � [ E , γ f ] � 2 min F : ( A + E ) x = b + f E , f , x CMA Harrachov 2007 — 5 of 27

  9. Backward Perturbation Analysis > The scaled total least squares problem The scaled total least squares problem Given A ∈ R m × n and b ∈ R m , the least squares problem is � � � f � 2 min 2 : Ax = b + f f , x The scaled total least squares (STLS) problem is � � � [ E , γ f ] � 2 min F : ( A + E ) x = b + f E , f , x The STLS problem reduces to the least squares (LS) problem as γ → 0 the total least squares (TLS) problem if γ = 1 the data least squares (DLS) problem as γ → ∞ CMA Harrachov 2007 — 5 of 27

  10. Backward Perturbation Analysis > The scaled total least squares problem STLS optimality conditions The STLS problem is equivalent to � b − Ax � 2 2 min γ − 2 + � x � 2 x 2 CMA Harrachov 2007 — 6 of 27

  11. Backward Perturbation Analysis > The scaled total least squares problem STLS optimality conditions The STLS problem is equivalent to � b − Ax � 2 2 min γ − 2 + � x � 2 x 2 Lemma (Paige and Strakoˇ s, 2002) under mild conditions on A and b, a unique STLS solution exists CMA Harrachov 2007 — 6 of 27

  12. Backward Perturbation Analysis > The scaled total least squares problem STLS optimality conditions The STLS problem is equivalent to � b − Ax � 2 2 min γ − 2 + � x � 2 x 2 Lemma (Paige and Strakoˇ s, 2002) under mild conditions on A and b, a unique STLS solution exists assuming these conditions hold, ˆ x is optimal if and only if x � 2 x � 2 x ) = − � b − A ˆ � b − A ˆ A T ( b − A ˆ 2 2 < σ 2 ˆ min ( A ) x and γ − 2 + � ˆ γ − 2 + � ˆ x � 2 x � 2 2 2 CMA Harrachov 2007 — 6 of 27

  13. Backward Perturbation Analysis > Backward perturbation analysis Outline The scaled total least squares problem Backward perturbation analysis A pseudo-minimal backward error µ A lower bound for µ An asymptotic estimate for µ Numerical experiments and conclusion CMA Harrachov 2007 — 7 of 27

  14. Backward Perturbation Analysis > Backward perturbation analysis Backward perturbation analysis Recent research: Consistent linear systems: Oettli & Prager (64), Rigal & Gaches (67), D. Higham & N. Higham (92), Varah (94), J.G. Sun & Z. Sun (97), Sun (99), etc. CMA Harrachov 2007 — 8 of 27

  15. Backward Perturbation Analysis > Backward perturbation analysis Backward perturbation analysis Recent research: Consistent linear systems: Oettli & Prager (64), Rigal & Gaches (67), D. Higham & N. Higham (92), Varah (94), J.G. Sun & Z. Sun (97), Sun (99), etc. LS problems: Stewart (77), Wald´ en, Karlson & Sun (95), Sun (96,97), Gu (98), Grcar, Saunders & Su (04), Golub & Su (05) CMA Harrachov 2007 — 8 of 27

  16. Backward Perturbation Analysis > Backward perturbation analysis Backward perturbation analysis Recent research: Consistent linear systems: Oettli & Prager (64), Rigal & Gaches (67), D. Higham & N. Higham (92), Varah (94), J.G. Sun & Z. Sun (97), Sun (99), etc. LS problems: Stewart (77), Wald´ en, Karlson & Sun (95), Sun (96,97), Gu (98), Grcar, Saunders & Su (04), Golub & Su (05) DLS problems: Chang, Golub & Paige (06) CMA Harrachov 2007 — 8 of 27

  17. Backward Perturbation Analysis > Backward perturbation analysis Backward perturbation analysis for STLS Given an approximate STLS solution 0 � = y ∈ R n , we seek minimal perturbations ∆ A and ∆ b such that y is the exact STLS solution of the perturbed problem: � ( b + ∆ b ) − ( A + ∆ A ) x � 2 2 y = arg min γ − 2 + � x � 2 x 2 CMA Harrachov 2007 — 9 of 27

  18. Backward Perturbation Analysis > Backward perturbation analysis Backward perturbation analysis for STLS Given an approximate STLS solution 0 � = y ∈ R n , we seek minimal perturbations ∆ A and ∆ b such that y is the exact STLS solution of the perturbed problem: � ( b + ∆ b ) − ( A + ∆ A ) x � 2 2 y = arg min γ − 2 + � x � 2 x 2 Applications: if ∆ A and ∆ b are small, we can say y is a backward stable (ie. numerically acceptable) solution CMA Harrachov 2007 — 9 of 27

  19. Backward Perturbation Analysis > Backward perturbation analysis Backward perturbation analysis for STLS Given an approximate STLS solution 0 � = y ∈ R n , we seek minimal perturbations ∆ A and ∆ b such that y is the exact STLS solution of the perturbed problem: � ( b + ∆ b ) − ( A + ∆ A ) x � 2 2 y = arg min γ − 2 + � x � 2 x 2 Applications: if ∆ A and ∆ b are small, we can say y is a backward stable (ie. numerically acceptable) solution this can be used to design stopping criteria for iterative methods for large sparse problems CMA Harrachov 2007 — 9 of 27

  20. Backward Perturbation Analysis > A pseudo-minimal backward error µ Outline The scaled total least squares problem Backward perturbation analysis A pseudo-minimal backward error µ A lower bound for µ An asymptotic estimate for µ Numerical experiments and conclusion CMA Harrachov 2007 — 10 of 27

  21. Backward Perturbation Analysis > A pseudo-minimal backward error µ The minimal backward error problem The minimal backward error problem: [∆ A , ∆ b ] ∈G { � [∆ A , ∆ b ] � F } min where � ( b + ∆ b ) − ( A + ∆ A ) x � 2 � � 2 G ≡ [∆ A , ∆ b ] : y = arg min γ − 2 + � x � 2 x 2 CMA Harrachov 2007 — 11 of 27

  22. Backward Perturbation Analysis > A pseudo-minimal backward error µ The set G Recall the STLS optimality conditions: x � 2  x ) + � b − A ˆ A T ( b − A ˆ h ( A , b , ˆ x ) ≡ 2 ˆ x = 0 , 2  γ − 2 + � ˆ x � 2 x � 2 � b − A ˆ σ 2 < min ( A ) 2  γ − 2 + � ˆ x � 2 2 CMA Harrachov 2007 — 12 of 27

  23. Backward Perturbation Analysis > A pseudo-minimal backward error µ The set G Recall the STLS optimality conditions: x � 2  x ) + � b − A ˆ A T ( b − A ˆ h ( A , b , ˆ x ) ≡ 2 ˆ x = 0 , 2  γ − 2 + � ˆ x � 2 x � 2 � b − A ˆ σ 2 < min ( A ) 2  γ − 2 + � ˆ x � 2 2 Therefore � ( b + ∆ b ) − ( A + ∆ A ) x � 2 � � 2 G ≡ [∆ A , ∆ b ] : y = arg min γ − 2 + � x � 2 x 2 CMA Harrachov 2007 — 12 of 27

  24. Backward Perturbation Analysis > A pseudo-minimal backward error µ The set G Recall the STLS optimality conditions: x � 2  x ) + � b − A ˆ A T ( b − A ˆ h ( A , b , ˆ x ) ≡ 2 ˆ x = 0 , 2  γ − 2 + � ˆ x � 2 x � 2 � b − A ˆ σ 2 < min ( A ) 2  γ − 2 + � ˆ x � 2 2 Therefore � ( b + ∆ b ) − ( A + ∆ A ) x � 2 � � 2 G ≡ [∆ A , ∆ b ] : y = arg min γ − 2 + � x � 2 x 2 � [∆ A , ∆ b ] : h ( A + ∆ A , b + ∆ b , y ) � = 0 , = � ( b +∆ b ) − ( A +∆ A ) y � 2 σ 2 < min ( A + ∆ A ) 2 γ − 2 + � y � 2 2 CMA Harrachov 2007 — 12 of 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend