reconstruction of the equilibrium of the plasma in a
play

Reconstruction of the equilibrium of the plasma in a Tokamak and - PowerPoint PPT Presentation

Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time. EQUINOX Blaise Faugeras Jacques Blum et C edric Boulbe GT Plasma, F evrier 2012 BF () EQUINOX GT Plasma, F


  1. Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time. EQUINOX Blaise Faugeras Jacques Blum et C´ edric Boulbe GT Plasma, F´ evrier 2012 BF () EQUINOX GT Plasma, F´ evrier 2012 1 / 38

  2. Outline Introduction 1 Mathematical modelling of axisymmetric equilibrium 2 Input measurements 3 Inverse problem 4 Verification and Validation 5 BF () EQUINOX GT Plasma, F´ evrier 2012 2 / 38

  3. JET : vacuum vessel and plasma BF () EQUINOX GT Plasma, F´ evrier 2012 3 / 38

  4. Tokamak BF () EQUINOX GT Plasma, F´ evrier 2012 4 / 38

  5. Introduction Equilibrium of a plasma : a free boundary problem Equilibrium equation inside the plasma, in axisymmetric configuration : Grad-Shafranov equation Right-hand side of this equation is a non-linear source : the toroidal component of the plasma current density Goal Identification of this non-linearity from experimental measurements. Perform the reconstruction of 2D equilibrium and the identification of the current density in real-time. BF () EQUINOX GT Plasma, F´ evrier 2012 5 / 38

  6. Mathematical modelling of the equilibrium Momentum equation : ρ ( ∂ u ∂ t + u . ∇ u ) + ∇ p = j × B At the slow resistive diffusion time scale ρ ( ∂ u ∂ t + u . ∇ u ) ≪ ∇ p Equilibrium equations   ∇ p = j × B (Conservation of momentum) ∇ . B = 0 (Conservation of B )  ∇ × B = µ j (Ampere’s law) + axisymmetric assumption = > Grad-Shafranov equation BF () EQUINOX GT Plasma, F´ evrier 2012 6 / 38

  7. Model 2D problem. Cylindrical coordinates ( r , φ, z ) State variable ψ ( r , z ) poloidal magnetic flux B p = 1 r ∇ ψ ⊥ In the plasma : Grad-Shafranov equation − ∆ ∗ ψ := ∂ ∂ r ( 1 ∂ψ ∂ r ) + ∂ ∂ z ( 1 ∂ψ 1 ∂ z ) = rp ′ ( ψ ) + µ 0 r ( ff ′ )( ψ ) µ 0 r µ 0 r In the vacuum − ∆ ∗ ψ = 0  1  − ∆ ∗ ψ = [ rp ′ ( ψ ) + µ 0 r ff ′ ( ψ )]1 Ω p ( ψ ) in Ω  ψ = g on Γ BF () EQUINOX GT Plasma, F´ evrier 2012 7 / 38

  8. Definition of the free plasma boundary Two cases outermost flux line inside the limiter (left) magnetic separatrix : hyperbolic line with an X-point (right) BF () EQUINOX GT Plasma, F´ evrier 2012 8 / 38

  9. z − ∆ ∗ ψ = 0 Ω C i Γ L ⊗ ⊗ Γ ⊗ ⊗ − ∆ ∗ ψ = j ( r, ψ ) b C 0 r Ω p − ∆ ∗ ψ = j i ⊗ ⊗ flux loop Ω ⊗ ⊗ Ω 0 B probe BF () EQUINOX GT Plasma, F´ evrier 2012 9 / 38

  10. From discrete magnetic measurements to Cauchy conditions on a fixed contour Magnetic measurements Flux loops : ψ ( M i ) B probes : B p ( N i ) . d i Cauchy conditions ( ψ , ∂ n ψ ) on Γ = ∂ Ω Dirichlet BC : direct problem Neumann BC : inverse problem Numerical methods Direct Interpolation (TCV, ToreSupra) Reconstruction of ψ in the vacuum - plasma boundary identification ◮ JET - Xloc : ∆ ∗ ψ = 0, ψ piecewise polynomial ◮ ToreSupra Apolo : ψ ( ρ, θ ), spline interp. in θ on ref. contour, Taylor expansion in ρ ◮ Toroidal harmonics + PFcoils current filaments model BF () EQUINOX GT Plasma, F´ evrier 2012 10 / 38

  11. Explicit solutions to ∆ ∗ ψ = 0 Laplacian in cylindrical coordinates If ∆ ∗ ψ ( r , z ) = 0 in D then Ψ( r , z , φ ) = 1 r ψ ( r , z ) cos φ , ∆Ψ = 0 in D ′ Bipolar (Toroidal) coordinates z a 2 r 2 + ( z − a cot η ) 2 = sin 2 η z M τ = log( MA MB ) × O × � η = AMB η a a B A r A B O × × a r a 2 a ( r − a coth τ ) 2 + z 2 = sinh 2 τ Quasi-separable solution � � Ψ( τ, η, φ ) = cosh τ − cosh η A ( τ ) B ( η ) cos φ BF () EQUINOX GT Plasma, F´ evrier 2012 11 / 38

  12. Complete set of solutions � � P 1 � � � � cos( k η ) � � 2 (cosh τ ) a sinh τ k − 1 T P , Q √ cosh τ − cos η k ∈ N = Q 1 c , s , k 2 (cosh τ ) sin( k η ) k − 1 k ∈ N References P.M. Morse and H. Feshbach. Methods of Theoritical Physics . 1953 E. Durand. Magn´ etostatique . 1968 N.N. Lebedev. Special Functions and their Applications . 1972 J. Segura and A. Gil. Evaluation of toroidal harmonics . CPC. 1999 Y. Fischer. PhD. 2011 BF () EQUINOX GT Plasma, F´ evrier 2012 12 / 38

  13. Flux in the vaccum N � � ( β P , Q c , s , k )( T P , Q ψ ( r , z ) = c , s , k ) + ψ f ( r , z ; r k , z k ) k =0 k N � � ( β P , Q B ( r , z ) = c , s , k ) B k ( r , z ) + B f ( r , z ; r k , z k ) k =0 k PF coils modelized by filaments of current Current I k at ( r k , z k ) : √ rr k [(1 − α 2 ψ f ( r , z ; r k , z k ) = µ 0 I k 2 ) J 1 ( α ) − J 2 ( α )] , B f = . . . απ Compute ( β P , Q c , s , k ) k =1: N ) by least-square fit to magnetic measurements ψ in the vacuum Ω 0 \ (Ω p ∪ Ω C i ) Evaluate ( ψ, ∂ n ψ ) on Γ BF () EQUINOX GT Plasma, F´ evrier 2012 13 / 38

  14. Experimental measurements magnetic ”measurements” ψ ( M i ) = g i and 1 ∂ψ ∂ n ( N j ) = h j on Γ r on mesh boundary (experimental measurements if possible, or outputs from other codes : toroidal harmonics, XLOC (JET) and APOLO (ToreSupra)) interferometry and polarimetry on several chords � � n e ( ψ ) ∂ψ n e ( ψ ) dl = α m , ∂ n dl = β m r C m C m motional Stark effect f j ( B r ( M j ) , B z ( M j ) , B φ ( M j )) = γ j BF () EQUINOX GT Plasma, F´ evrier 2012 14 / 38

  15. BF () EQUINOX GT Plasma, F´ evrier 2012 15 / 38

  16. Statement of the inverse problem State equation   − ∆ ∗ ψ = λ [ r ψ ) + R 0 A ( ¯ r B ( ¯ ψ )]1 Ω p ( ψ ) in Ω R 0  ψ = g on Γ Least square minimization J ( A , B , n e ) = J 0 + K 1 J 1 + K 2 J 2 + J ǫ with J 0 = � j (1 ∂ψ ∂ n ( N j ) − h j ) 2 r � J 1 = � ∂ψ n e ∂ n dl − α i ) 2 i ( r C i � J 2 = � n e dl − β i ) 2 i ( C i � 1 � 1 � 1 ( ∂ 2 A ( ∂ 2 B ( ∂ 2 n e ψ 2 ) 2 d ¯ ψ 2 ) 2 d ¯ ψ 2 ) 2 d ¯ J ǫ = ǫ ψ + ǫ ψ + ǫ ne ψ ∂ ¯ ∂ ¯ ∂ ¯ 0 0 0 BF () EQUINOX GT Plasma, F´ evrier 2012 16 / 38

  17. Numerical method Finite element resolution  Find ψ ∈ H 1 with ψ = g on Γ such that    � � 1 λ [ r ψ ) + R 0  ∀ v ∈ H 1 A ( ¯ r B ( ¯ 0 , µ 0 r ∇ ψ ∇ vdx = ψ )] vdx   R 0 Ω Ω p with A ( x ) = � B ( ψ ) = � i a i f i ( x ) , i b i f i ( x ) , u = ( a i , b i ) Fixed point K ψ = Y ( ψ ) u + g K modified stiffness matrix, u coefficients of A and B , g Dirichlet BC Direct solver : ( ψ n , u ) → ψ n +1 ψ n +1 = K − 1 [ Y ( ψ n ) u + g ] BF () EQUINOX GT Plasma, F´ evrier 2012 17 / 38

  18. Numerical method Least-square minimization J ( u ) = � C ( ψ ) ψ − d � 2 + u T Au d : experimental measurements A : regularization terms Approximation J ( u ) = � C ( ψ n ) ψ − d � 2 + u T Au , with ψ = K − 1 [ Y ( ψ n ) u + g ] = � C ( ψ n ) K − 1 Y ( ψ n ) u + C ( ψ n ) K − 1 g − d � 2 + u T Au J ( u ) = � E n u − F n � 2 + u T Au Normal equation. Inverse solver : ψ n → u ( E nT E n + A ) u = E nT F n BF () EQUINOX GT Plasma, F´ evrier 2012 18 / 38

  19. Numerical method. EQUINOX One equilibrium reconstruction : Fixed-point iterations : ◮ Inverse solver : ψ n → u n +1 ◮ Direct solver : ( ψ n , u n +1 ) → ψ n +1 ◮ Stopping condition || ψ n +1 − ψ n || < ǫ || ψ n || A pulse in real-time : Quasi-static approach : ◮ first guess at time t = equilibrium at time t − δ t ◮ limited number of iterations Normal equation : ≈ 10 basis func. → small ≈ 20 × 20 linear system Tikhonov regularization parameters unchanged K = LU and K − 1 precomputed and stored once for all Expensive operations : update products C ( ψ ) K − 1 and C ( ψ ) K − 1 Y ( ψ ) BF () EQUINOX GT Plasma, F´ evrier 2012 19 / 38

  20. Numerical Results : Tore Supra and JET characteristics ToreSupra JET Finite element mesh Number of triangles 1382 2871 Number of nodes 722 1470 functions A and B Basis type Bspline Bspline Number of basis func. 8 8 Computation time (1.80GHz) One equilibrium 20 ms 60 ms Real-time requirement : 100 ms BF () EQUINOX GT Plasma, F´ evrier 2012 20 / 38

  21. Tore Supra - Magnetics and polarimetry BF () EQUINOX GT Plasma, F´ evrier 2012 21 / 38

  22. JET - Magnetics and polarimetry BF () EQUINOX GT Plasma, F´ evrier 2012 22 / 38

  23. Algorithm verification : twin experiments Method Functions A and B given. Generate ”measurements” with direct code Test the possibility to recover the functions by solving the inverse problem Noise free experiments. Magnetics only. With a well-chosen regularization parameter ε , A and B are well recovered. Averaged current density and q profiles are not very sensitive to ε . Experiments with noise. Magnetics only and mag+polarimetry. Averaged current density and q profiles are less sensitive to noise than A and B . With polarimetry A and B are better constrained. BF () EQUINOX GT Plasma, F´ evrier 2012 23 / 38

  24. Average over magnetic surfaces � � � � ∂ gdv = 1 gds gdl dl < g > = |∇ ρ | = / ∂ V V ′ B p B p V S C ρ C ρ ρ a coordinate indexing the magnetic surfaces BF () EQUINOX GT Plasma, F´ evrier 2012 24 / 38

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend