rational bases for system identification
play

Rational bases for system identification Adhemar Bultheel - PowerPoint PPT Presentation

Rational bases for system identification Adhemar Bultheel Department Computer Science Numerical Approximation and Linear Algebra Group (NALAG) K.U.Leuven, Belgium adhemar.bultheel@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ ade/


  1. Rational bases for system identification Adhemar Bultheel Department Computer Science Numerical Approximation and Linear Algebra Group (NALAG) K.U.Leuven, Belgium adhemar.bultheel@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ ∼ ade/ September 2002 M´ etodos de aproximaci´ on en teor´ ıa de sistemas, Laredo, September 2002

  2. 1/63 Summary 1. Definitions from signals, systems 2. Vector orthogonal polynomials (Jacobi/unitary Hessenberg matrices) 3. Orthogonal rational functions in L 2 ( R , µ ) , L 2 ( T , µ ) 4. ORF and inverse (Hessenberg) eigenvalue problem (semiseparable matrices) M´ etodos de aproximaci´ on en teor´ ıa de sistemas, Laredo, September 2002 A. Bultheel

  3. 2/63 Definitions • A signal is a complex function of a time variable. -discrete ( f n ) , n ∈ Z (discrete signal) or -continuous f ( t ) , t ∈ R (analog signal) • Define a delay operator ( D f ) n = f n − 1 ( D f ( t ) = f ( t − 1) ) • A pulse δ is the Kronecker delta (Dirac delta function) • A pulse decomposition: m f m D m ) δ f ( s ) D s δ ( · ) ds ) � f = ( � ( f = • An inner product: � f, g � = � f n g n � ( � f, g � = f ( t ) g ( t ) dt ) • The convolution h = f ∗ g : � h n = � m f m g n − m ( h ( t ) = f ( s ) g ( s − t ) ds ) M´ etodos de aproximaci´ on en teor´ ıa de sistemas, Laredo, September 2002 A. Bultheel

  4. 3/63 • The (auto)correlation function: � ( r fg ) n = � m f m g n + m ( r fg ( t ) = f ( s ) g ( s + t ) ds ) � ( r ff ) n = r n = � m f m f n + m ( r ff ( t ) = r ( t ) = f ( s ) f ( s + t ) ds ) • The Fourier transform: F = F f F ( e iω ) = � m f m e − imω f ( t ) e − itω dt ) � ( F ( ω ) = • The Z -transform: m f m z − m f ( t ) e − itz dt ) � F ( z ) = � ( F ( z ) = f ( t ) e − tp dt ) � (compare with (2-sided) Laplace transform F ( p ) = F ( z ) | z = e iω ∈ T = ( F f )( e iω ) F ( z ) | z = ω ∈ R = ( F f )( ω ) • power spectrum: R = F r = | F | 2 white noise: R = constant; normalized constant = 1 colored noise: g = H f , f white noise. M´ etodos de aproximaci´ on en teor´ ıa de sistemas, Laredo, September 2002 A. Bultheel

  5. 4/63 • A (linear) system H is a (linear) operator that maps a signal (input) to another signal (output) H u = y • It is stationary or time invariant if HD = DH • The impulse response: h = H δ y = H u = H ( � u m D m ) δ = � u m D m ( H δ ) = ( � u m h n − m ) = h ∗ u u ( s ) D s � u ( s ) D s ( H δ ) = �� � � y = H u = H δ = u ( s ) h ( · − s ) = h ∗ u y = h ∗ u = u ∗ h = � h m D m u = H ( D − 1 ) u hence H = H ( D − 1 ) . • The transfer function: H ( z ) = ( Z h )( z ) = | H ( z ) | e i Φ( z ) amplitude: | H ( z ) | and phase: Φ( z ) . • A causal system: if u = 0 before time 0, then y = 0 before time 0. • A (BIBO) stable system: if � u � < ∞ ⇒ �H u � < ∞ M´ etodos de aproximaci´ on en teor´ ıa de sistemas, Laredo, September 2002 A. Bultheel

  6. 5/63 • For a causal stable system: H ∈ H 2 ( E ) ( H ∈ H 2 ( L ) ) • The inverse system: if H ( z ) � = 0 , z ∈ T ( z ∈ R ), inverse = 1 /H ( z ) . Stable & causal then inverse if poles of H in D (in U ) Inverse is table & causal if zeros of H in D (in U ) the latter is called minimal phase • A system is all pass if | H ( z ) | = 1 (hence � Y � = � HU � = � U � ) • FIR/MA: H is polynomial in z − 1 (otherwise IIR) AR: H = cnst/polynomial in z − 1 ARMA: H = rational in z − 1 proper: deg(numerator) ≤ deg(denominator) ( ⇐ stable & causal) M´ etodos de aproximaci´ on en teor´ ıa de sistemas, Laredo, September 2002 A. Bultheel

  7. 6/63 State Space If H is proper rational then partial fraction expansion: c 1 c n = C ( zI − A ) − 1 B + D H ( z ) = D + + · · · + z − α 1 z − α n where B = [1 , . . . , 1] T , A = diag( α 1 , . . . , α n ) , C = [ c 1 , . . . , c n ] , D = H ( ∞ ) . This is called a state space description of the system. It is characterized by the 4 matrices ( A, B, C, D ) . Such a state space description is not unique. M´ etodos de aproximaci´ on en teor´ ıa de sistemas, Laredo, September 2002 A. Bultheel

  8. 7/63 If T is an invertible matrix, then ( A, B, C, D ) ≡ ( A ′ , B ′ , C ′ , D ′ ) if � − 1 A ′ B ′ TAT − 1 � � � � � � � � � T 0 A B T 0 TB = = C ′ D ′ CT − 1 0 1 C D 0 1 D since C ( zI − A ) − 1 B + D = C ′ ( zI − A ′ ) − 1 B ′ + D ′ . A minimal realization: size A is minimal. Then σ ( A ) = poles of the transfer function. H ( z ) = � h k z + · · · + CA k − 1 B z k = D + C ( zI − A ) − 1 B = D + CB + · · · . z k Y ( z ) = [ C ( zI − A ) − 1 B + D ] U ( z ) = CX ( z ) + DU ( z ) with X ( z ) = ( zI − A ) − 1 BU ( z ) or zX ( z ) = AX ( z ) + BU ( z ) . This zX ( z ) = AX ( z ) + BU ( z ) Y ( z ) = CX ( z ) + DU ( z ) M´ etodos de aproximaci´ on en teor´ ıa de sistemas, Laredo, September 2002 A. Bultheel

  9. 8/63 is the z-domain formulation of x ( t ) = 1 dx ( t ) x n +1 = Ax n + Bu n x ( t ) = Ax ( t ) + Bu ( t ) ˙ y ( t ) = Cx ( t ) + Du ( t ) ˙ y n = Cx n + Du n i dt if system is causal and stable and state is zero at time zero. x is the state. SS description very powerful because of - linear algebra techniques applicable - generalization of SISO to MIMO is relatively simple n n u n A B n y C D - many other advantages M´ etodos de aproximaci´ on en teor´ ıa de sistemas, Laredo, September 2002 A. Bultheel

  10. 9/63 Identification problem U 0 Y0 G N N U Y Y U Y = G ( U − N U ) + N Y = GU + ( N Y − GN U ) = GU + V , V = H 0 E , E white noise, H 0 some coloring filter. It is assumed we know Y and U (or G ) in a number of frequency points: z k ∈ T or R and some information about the noise (covariances) M´ etodos de aproximaci´ on en teor´ ıa de sistemas, Laredo, September 2002 A. Bultheel

  11. 10/63 Frequency Domain Identification Estimate G as ˆ G such that we minimize � Y − ˆ Y � w y or � G − ˆ G � w g where w = � N � F � 2 k =1 w 2 k | F ( z k ) | 2 . Note with w g = w y U : � Y − ˆ Y � w y = � GU − ˆ GU � w y = � ( G − ˆ G ) U � w y = � G − ˆ G � w g , E.g. measurements { G ( z j ) } N j =1 , variance { σ j } N j =1 , then set w g = 1 /σ . � � � � Y U − B Y A − BU w = w g � G − ˆ � � � � G � w g = = = � Y A − BU � w , � � � � A AU AU � � � � w g w g In ML estimation: w − 2 = Cov( AY − BU ) = σ 2 Y | A | 2 + σ 2 U | B | 2 − 2Re( σ 2 Y U AB ) . M´ etodos de aproximaci´ on en teor´ ıa de sistemas, Laredo, September 2002 A. Bultheel

  12. 11/63 Linear/Nonlinear problem Suppose ˆ G parametrised by parameter set θ . Cost function: C ( θ ) = C ( L ( θ ) , N ( θ )) , L linear, N nonlinear. If N does not depend on θ , the problem becomes a linear LSQ problem. Solving for min C ( θ ) directly is costly and not convex so convergence to global min is not guaranteed, unless we use a good starting point. The method of solution: ITERATE θ ( k +1) = argmin C ( L ( θ ) , N ( θ ( k ) )) . May work in some cases to find global solution. Requires a stable and efficient method to solve the linear LSQ problem. Need constraints. E.g. system stability needs system poles in D . So have to solve a constrained and weightes NLSQ problem in C . ITERATE converges, then use as starting point for min C ( θ ) with standard routine. M´ etodos de aproximaci´ on en teor´ ıa de sistemas, Laredo, September 2002 A. Bultheel

  13. 12/63 Polynomial method min C = min � Y A − UB � 2 w w may depend upon (estimated) solution . Set W = w [ Y − U ] , P = [ A B ] T ⇒ w ( Y A − UB ) = WP N C = � WP � 2 = � P � 2 � P ( z j ) H W H P ∈ P 2 × 1 W = j W j P ( z j ) , . n j =1 � f, g � W = � f ( z j ) H W H j W j g ( z j ) a p.d. inner product in P 2 × 1 if n ≤ N . n min � P � W needs constraint: e.g. P “monic”. How to parametrize P ? M´ etodos de aproximaci´ on en teor´ ıa de sistemas, Laredo, September 2002 A. Bultheel

  14. 13/63 � 1 z − 1 z − n � · · · 0 0 · · · 0 z − 1 z − n 0 0 · · · 0 1 · · · dim P 2 × 1 = 2( n + 1) : or � 1 z − 1 z − n � 0 0 · · · 0 z − 1 z − n 0 1 0 · · · 0 Simpler to orthogonalize { I, z − 1 I, . . . , z − n I } w.r.t. matrix-valued SP � f, g � W = � f ( z j ) H W H j W j g ( z j ) in P 2 × 2 Gives orthogonal block polynomials φ k : � φ k , φ l � W = δ k − l I to make unique choose e.g. l.c. upper triangular. Write P = � n k =0 φ k λ k = Φ( z ) λ , φ k ∈ P 2 × 2 , λ k ∈ C 2 × 1 , λ n � = 0 . k W = � Φ λ � W = λ H Φ H W H WΦ λ , Φ = [ φ j ( z i )] , W = diag( W k ) . � P � 2 φ k orthonormal ⇒ Φ H W H WΦ = Q H Q = I , Q = WΦ is unitary W = min � λ � 2 = λ H min � P � 2 n λ n ⇒ P = φ n λ n . M´ etodos de aproximaci´ on en teor´ ıa de sistemas, Laredo, September 2002 A. Bultheel

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend