rare events in driven one dimensional models
play

Rare events in driven one-dimensional models Giacomo Gradenigo - PowerPoint PPT Presentation

Rare events in driven one-dimensional models Giacomo Gradenigo (LPTMS PARIS 11) Large Deviations in Statistical Physics Stellenbosch 5-11-2014 Simple diffusion may hidden surprises ! h x 2 ( t ) i = 2 Dt h x ( t ) i E = E t


  1. Rare events in driven one-dimensional models Giacomo Gradenigo (LPTMS – PARIS 11) ‘’Large Deviations in Statistical Physics’’ Stellenbosch 5-11-2014

  2. Simple diffusion may hidden surprises ! h x 2 ( t ) i = 2 Dt h x ( t ) i E = µ E t Brownian motion of a colloidal particle in an equilibrium fluid

  3. Simple diffusion may hidden surprises ! h x 2 ( t ) i = 2 Dt ? h x ( t ) i E = µ E t

  4. Simple diffusion may hidden surprises ! Drift induced by external field No Large Deviation Principle Average velocity v h x 2 ( t ) i = 2 Dt Displacement X E h x ( t ) i E = µ E t P ( X E /t = v ) 6 = e − t φ ( v ) ‘’Non-­‑equilibrium ¡fluctua4ons ¡in ¡a ¡driven ¡stochas4c ¡Lorentz ¡gas’’, ¡ ¡ G. ¡Gradenigo, ¡U. ¡B. ¡M. ¡Marconi, ¡Sarracino, ¡A. ¡Puglisi, ¡PRE ¡(2012) ¡ ‘’Fluctua4on ¡rela4ons ¡without ¡uniform ¡large ¡devia4ons’’, ¡ ¡ G. ¡Gradenigo, ¡A. ¡Sarracino, ¡A. ¡Puglisi, ¡H. ¡ToucheQe, ¡J. ¡Phys. ¡A ¡(2013) ¡

  5. Simple diffusion may hidden surprises ! Anomalous dynamics heterogeneous substrate h x 2 ( t ) i = 2 Dt h x 2 ( t ) i E � h x ( t ) i 2 E ⇠ t γ γ > 1 h x ( t ) i E = µ E t Superdiffusion ‘’Einstein ¡rela4on ¡in ¡superdiffusive ¡system’’, ¡ ¡G. ¡Gradenigo, ¡A. ¡Sarracino, ¡D. ¡Villamaina, ¡A. ¡Vulpiani, ¡JSTAT ¡(2012) ¡ ‘’Rare ¡events ¡and ¡scaling ¡proper4es ¡in ¡field ¡induced ¡anomalous ¡dynamics’’, ¡ ¡ R. ¡Burioni, ¡G. ¡Gradenigo, ¡A. ¡Sarracino, ¡A. ¡Vezzani, ¡A. ¡Vulpiani, ¡JSTAT ¡(2013) ¡ ‘’Scaling ¡proper4es ¡of ¡field-­‑induced ¡superdiffusion ¡in ¡CTRW’’, ¡ ¡ R. ¡Burioni, ¡G. ¡Gradenigo, ¡A. ¡Sarracino, ¡A. ¡Vezzani, ¡A. ¡Vulpiani, ¡Commun. ¡Theor. ¡Phys. ¡(2014) ¡

  6. Plan of the talk Part I The driven stochastic Lorentz gas Entropy production Non-uniform Large Deviations (a constructive role of the Fluctuation-Relation) Part II Continuous Time Random Walk with traps Driven Anomalous (Super-) diffusion Driven Anomalous (Super-) diffusion in a simple glass model

  7. PART I

  8. Stochastic Lorentz gas ( m, v ) tracer ¡ scaQerer ¡ ( M, V ) Ÿ Inelastic collisions with random v i +1 = γ v i + (1 − γ ) V scatterers (independet on |v-V| !!!!) P nc ( t ) = e − t/ τ c Ÿ Free fligths at constant velocity σ 2 = T/M γ = ( ζ − α ) / (1 + ζ ) ζ = m/M P S ( V ) = Gauss v α < 1 Res4tu4on ¡coefficient ¡ τ v i +1 v i t

  9. Driven stochastic Lorentz gas ( m, v ) probe ¡ scaQerer ¡ ( M, V ) Ÿ Inelastic collisions with random v i +1 = γ v i + (1 − γ ) V scatterers (independet on |v-V| !!!!) P nc ( t ) = e − t/ τ c Ÿ ‘’Free’’ fligths at uniform acceleration v t i t t i +1 Ÿ ¡ Ÿ ¡ Ÿ ¡ t v ( t ) = v i + ( t − t i ) E

  10. Driven stochastic Lorentz gas Linear Boltzmann equation 1 ✓ v − γ u ◆ Z τ c ∂ t P ( v, t ) + τ c E ∂ v P ( v, t ) = − P ( v, t ) + duP ( u, t ) P S 1 − γ 1 − γ Z 1 Z 1 dv 0 w ( v | v 0 ) P ( v 0 , t ) − dv 0 w ( v 0 | v ) P ( v, t ) τ c ∂ t P ( v, t ) + τ c E ∂ v P ( v, t ) = �1 �1 Special case exactly solvable (Renewal process) v i +1 = V γ = 0 α = ζ = m/M Z ∞ r 1 ✓ ◆ ✓ ◆ M − M − u 2 T ( v − u ) 2 P ( v ) = du exp × exp 2 π T τ c E τ c E 0

  11. Driven stochastic Lorentz gas Special case exactly solvable γ = 0 α = ζ = m/M Z ∞ r 1 ✓ ◆ ✓ ◆ M − M − u 2 T ( v − u ) 2 P ( v ) = du exp × exp 2 π T τ c E τ c E 0

  12. Driven stochastic Lorentz gas Drift h x ( t ) i ε ⇠ t Diffusion h x 2 ( t ) i ⇠ t Z ∞ r ✓ ◆ ✓ ◆ 1 M − M − u 2 T ( v − u ) 2 P ( v ) = du exp × exp 2 π T τ c E τ c E 0

  13. Entropy production v ∆ s tot ( t ) = log P [ { v ( t ) }| v 0 ] P ( v 0 ) P [ { ˜ v ( t ) }| ˜ v 0 ] P (˜ v 0 ) t Forw { v ( t ) } = ( v 0 , t 1 , v 1 , v 0 1 , t 2 − t 1 , v 2 , v 0 2 , . . . , v n , v 0 n , t − t n ) Back v ( t ) } = ( − v t , t − t n , − v 0 n , − v n , t n − t n � 1 , . . . , − v 0 { ˜ 1 , − v 1 , t 1 , − v 0 ) Probability of forward and backward trajectories N c Y P nc ( t i − t i � 1 ) w ( v 0 P [ { v ( t ) }| v 0 ] = P nc ( t − t n ) i | v i ) j =1 N c Y P nc ( t i − t i � 1 ) w ( − v i | − v 0 P [ { ˜ v ( t ) }| ˜ v 0 ] = P nc ( t − t n ) i ) j =1

  14. Entropy production Total entropy production N c ( t ) w ( v 0 j | v j ) ∆ s tot ( t ) = log P [ { v ( t ) }| v 0 ] P ( v 0 ) j ) + log P ( v 0 ) X v 0 ) = log P [ { ˜ v ( t ) }| ˜ v 0 ] P (˜ w ( − v j | − v 0 P ( − v t ) j =1 Probability of forward and backward trajectories N c Y P nc ( t i − t i � 1 ) w ( v 0 P [ { v ( t ) }| v 0 ] = P nc ( t − t n ) i | v i ) j =1 N c Y P nc ( t i − t i � 1 ) w ( − v i | − v 0 P [ { ˜ v ( t ) }| ˜ v 0 ] = P nc ( t − t n ) i ) j =1

  15. Entropy production Total entropy production N c ( t ) w ( v 0 j | v j ) ∆ s tot ( t ) = log P [ { v ( t ) }| v 0 ] P ( v 0 ) j ) + log P ( v 0 ) X v 0 ) = log P [ { ˜ v ( t ) }| ˜ v 0 ] P (˜ w ( − v j | − v 0 P ( − v t ) j =1 ∆ s tot ( t ) = − ∆ E coll ( t ) + log P ( v 0 ) P ( − v t ) θ W ( t ) + ∆ E coll ( t ) = ∆ E ( t ) = m Energy = work + collisions 2 ( v 2 t − v 2 0 ) ∆ s tot ( t ) = W ( t ) 0 ] + ln P ( v (0)) − m 2 θ [ v 2 t − v 2 P ( − v ( t )) θ ‘’temperature of the probe when E = 0 θ = θ ( α , m, M, T ) 6 = T

  16. Entropy production rate & average velocity W ( t ) = m E X ( t ) X ( t ) = O ( t ) ∆ s tot ( t ) = W ( t ) 0 ] + ln P ( v (0)) − m 2 θ [ v 2 t − v 2 P ( − v ( t )) θ B = O (1) ∆ s tot ( t ) = m E θ X ( t ) + B P ( X ( t ) /t = s ) ∼ e − tI ( v ) P ( ∆ s tot /t = s ) ∼ e − tI ( s )+ o ( t )

  17. Large Deviations and Fluctuation Theorem P ( ∆ s tot /t = s ) ∼ e − tI ( s )+ o ( t ) Large Deviation Principle Symmetry of the rate function I ( s ) − I ( − s ) = s P ( ∆ s tot /t = s ) Fluctuation theorem P ( ∆ s tot /t = − s ) = e ts But not today for the driven Lorenz gas!!

  18. Large Deviations and Fluctuation Theorem P ( ∆ s tot /t = s ) ∼ e − tI ( s )+ o ( t ) NO (Uniform) Large Deviation Principle P ( ∆ s tot /t = s ) Fluctuation theorem P ( ∆ s tot /t = − s ) = e ts

  19. Large Deviations for entropy production rate ∆ s tot ( t ) = m E θ X ( t ) + B Scaling cumulant 1 t ln h e k ∆ s tot i λ ∆ s tot ( k ) = lim generating function t →∞ LDP rate function I ( s ) = max k ∈ R { sk − λ ∆ s tot ( k ) } λ ∆ s tot ( k ) < ∞ for k ∈ ( − 1 , 0] ∆ s tot ( k = � 1 + ) = m τ c E 2 = h W i λ 0 ∆ s tot ( k = 0 � ) = � λ 0 θ θ − m τ c E 2 , m τ c E 2  � I ( s ) well defined only for s ∈ θ θ

  20. Large Deviations for entropy production rate Lack of large deviation principle for fluctuations on the right of average velocity h W i = m E v θ θ λ ∆ s tot ( k ) < ∞ for k ∈ ( − 1 , 0] ∆ s tot ( k = � 1 + ) = m τ c E 2 = h W i λ 0 ∆ s tot ( k = 0 � ) = � λ 0 θ θ − m τ c E 2 , m τ c E 2  � I ( s ) well defined only for s ∈ θ θ

  21. Rare events induce violation of the LDP Exponentially rare long ballistic Violation of the LDP (no collisions) trajectories ∆ s tot ( t ) = 1 + ln P ( v (0)) ⇣ m ⌘ 2 [ v 2 (0) − v 2 ( t )] + m E X ( t ) θ P ( − v ( t )) ∆ s tot ∼ m ∆ s tot = ln P ( v (0)) 2 θ E 2 t 2 ∼ x E ( t ) P ( − v ( t )) √ ⇣ t √ s ⌘ P nc ( t ) = e − t/ τ c p ( ∆ s tot /t = s ) ∼ exp − κ «fat » tail

  22. A constructive role of Fluctuation Theorem RIGHT tail of the distribution √ t φ R ( s ) P ( ∆ s tot /t = s ) ∼ e −

  23. A constructive role of Fluctuation Theorem RIGHT tail of the distribution √ t φ R ( s ) P ( ∆ s tot /t = s ) ∼ e − Fluctuation Relation √ t φ R ( s ) P ( ∆ s tot /t = − s ) = e − ts P ( ∆ s tot /t = − s ) = e − ts −

  24. A constructive role of Fluctuation Theorem RIGHT tail of the distribution √ t φ R ( s ) P ( ∆ s tot /t = s ) ∼ e − Fluctuation Relation √ t φ R ( s ) P ( ∆ s tot /t = − s ) = e − ts P ( ∆ s tot /t = − s ) = e − ts − LEFT tail of the distribution P ( ∆ s tot /t = − s ) = e − t φ L ( s )

  25. Two speeds for the Large Deviation Principle s < s ∗ s > s ∗ √ P ( s, t ) ∼ e − t φ L ( s ) t φ R ( s ) P ( s, t ) ∼ e − s ∗ = m τ c E 2 θ s ∗

  26. Two speeds for the Large Deviation Principle v < m E v > m E θ v θ v √ P ( v, t ) ∼ e − t φ L ( v ) t φ R ( v ) P ( v, t ) ∼ e − s ∗ = m E θ v s ∗

  27. PART II

  28. Continuous time random walk (with traps) Probability to move forward/backward 1 / 2 1 / 2 Free 1 / 2 − ε 1 / 2 + ε Driven p ( τ ) Persistence time before jumps

  29. Continuous time random walk (with traps) Probability to move forward/backward 1 / 2 1 / 2 ⇣ x 1 h x 2 ( t ) i ⇠ t ⌘ P ( x, t ) = t 1 / 2 G t 1 / 2 1 / 2 − ε 1 ✓ x − v ε t ◆ 1 / 2 + ε P ε ( x, t ) = t 1 / 2 G t 1 / 2 h x ( t ) i ε ⇠ t p ( τ ) = e − τ / τ 0 Persistence time before jumps

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend