randomized rumour spreading on random k trees
play

Randomized Rumour Spreading on Random k -trees Abbas Mehrabian - PowerPoint PPT Presentation

Randomized Rumour Spreading on Random k -trees Abbas Mehrabian amehrabi@uwaterloo.ca University of Waterloo 5 May 2014 Monash University Abbas (Waterloo) Rumour spreading 5 May 1 / 58 Protocol definition Demers, Gealy, Greene, Hauser,


  1. Randomized Rumour Spreading on Random k -trees Abbas Mehrabian amehrabi@uwaterloo.ca University of Waterloo 5 May 2014 Monash University Abbas (Waterloo) Rumour spreading 5 May 1 / 58

  2. Protocol definition Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods’87 1. The ground is a simple connected graph. 2. At time 0, one vertex knows a rumour. 3. At each time-step 1 , 2 , . . . , every informed vertex tells the rumour to a random neighbour. Abbas (Waterloo) Rumour spreading 5 May 9 / 58

  3. Protocol definition Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods’87 1. The ground is a simple connected graph. 2. At time 0, one vertex knows a rumour. 3. At each time-step 1 , 2 , . . . , every informed vertex tells the rumour to a random neighbour. Remark 1. Informed vertex may call a neighbour in consecutive steps. Remark 2. If a vertex receives the rumour at time t , it starts passing it from time t + 1. Abbas (Waterloo) Rumour spreading 5 May 9 / 58

  4. Protocol definition Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods’87 1. The ground is a simple connected graph. 2. At time 0, one vertex knows a rumour. 3. At each time-step 1 , 2 , . . . , every informed vertex tells the rumour to a random neighbour. Remark 1. Informed vertex may call a neighbour in consecutive steps. Remark 2. If a vertex receives the rumour at time t , it starts passing it from time t + 1. inform-time( v ): the first time v learns the rumour. Spread Time: the first time everyone knows the rumour. Abbas (Waterloo) Rumour spreading 5 May 9 / 58

  5. Application: distributed computing Abbas (Waterloo) Rumour spreading 5 May 10 / 58

  6. Application: distributed computing Rumour spreading advantages: � Simplicity, locality, no memory � Scalability, reasonable link loads � Robustness Abbas (Waterloo) Rumour spreading 5 May 10 / 58

  7. Example: a path Abbas (Waterloo) Rumour spreading 5 May 11 / 58

  8. Example: a path inform − time ( 0 ) = 0 Abbas (Waterloo) Rumour spreading 5 May 11 / 58

  9. Example: a path inform − time ( 0 ) = 0 inform − time ( 1 ) = 1 Abbas (Waterloo) Rumour spreading 5 May 12 / 58

  10. Example: a path inform − time ( 0 ) = 0 inform − time ( 1 ) = 1 inform − time ( 2 ) = 1 + Geo ( 1 / 2 ) Abbas (Waterloo) Rumour spreading 5 May 13 / 58

  11. Example: a path inform − time ( 0 ) = 0 inform − time ( 1 ) = 1 inform − time ( 2 ) = 1 + Geo ( 1 / 2 ) inform − time ( 3 ) = 1 + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) Abbas (Waterloo) Rumour spreading 5 May 14 / 58

  12. Example: a path inform − time ( 0 ) = 0 inform − time ( 1 ) = 1 inform − time ( 2 ) = 1 + Geo ( 1 / 2 ) inform − time ( 3 ) = 1 + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) inform − time ( 4 ) = 1 + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) Abbas (Waterloo) Rumour spreading 5 May 15 / 58

  13. Example: a path inform − time ( 0 ) = 0 inform − time ( 1 ) = 1 inform − time ( 2 ) = 1 + Geo ( 1 / 2 ) inform − time ( 3 ) = 1 + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) inform − time ( 4 ) = 1 + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) E [ Spread Time ] = 1 + 3 × 2 = 7 Abbas (Waterloo) Rumour spreading 5 May 16 / 58

  14. Example: a path inform − time ( 0 ) = 0 inform − time ( 1 ) = 1 inform − time ( 2 ) = 1 + Geo ( 1 / 2 ) inform − time ( 3 ) = 1 + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) inform − time ( 4 ) = 1 + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) + Geo ( 1 / 2 ) E [ Spread Time ] = 1 + 3 × 2 = 7 = 2 n − 3 Abbas (Waterloo) Rumour spreading 5 May 17 / 58

  15. Example: a star Abbas (Waterloo) Rumour spreading 5 May 18 / 58

  16. Example: a star When k + 1 vertices are informed and n − 1 − k uninformed, n − 1 after n − 1 − k more rounds a new vertex will be informed. Abbas (Waterloo) Rumour spreading 5 May 18 / 58

  17. Example: a star When k + 1 vertices are informed and n − 1 − k uninformed, n − 1 after n − 1 − k more rounds a new vertex will be informed. E [ Spread Time ] = n − 1 n − 1 + n − 1 n − 2 + · · · + n − 1 + n − 1 ≈ n ln n 2 1 Abbas (Waterloo) Rumour spreading 5 May 18 / 58

  18. Example: a complete graph Abbas (Waterloo) Rumour spreading 5 May 19 / 58

  19. Example: a complete graph [ Pittel ′ 87 ] E [ Spread Time ] ≈ log 2 n + ln n Abbas (Waterloo) Rumour spreading 5 May 19 / 58

  20. Other known results With probability approaching 1, for any starting vertex, 1. max { diameter ( G ) , log 2 n } ≤ Spread Time ≤ ( 1 + o ( 1 )) n ln n [Elsässer and Sauerwald’06] Abbas (Waterloo) Rumour spreading 5 May 20 / 58

  21. Other known results With probability approaching 1, for any starting vertex, 1. max { diameter ( G ) , log 2 n } ≤ Spread Time ≤ ( 1 + o ( 1 )) n ln n [Elsässer and Sauerwald’06] 2. Spread Time of H d = Θ ( d ) [Feige, Peleg, Raghavan, Upfal’90] H 3 Abbas (Waterloo) Rumour spreading 5 May 20 / 58

  22. Other known results With probability approaching 1, for any starting vertex, 1. max { diameter ( G ) , log 2 n } ≤ Spread Time ≤ ( 1 + o ( 1 )) n ln n [Elsässer and Sauerwald’06] 2. Spread Time of H d = Θ ( d ) [Feige, Peleg, Raghavan, Upfal’90] H 3 3. If pn ≥ ( 1 + ε ) ln n then Spread Time of G ( n , p ) = Θ ( log n ) [Feige et al.’90] Abbas (Waterloo) Rumour spreading 5 May 20 / 58

  23. Improving the protocol Uninformed vertices ask the informed ones... Abbas (Waterloo) Rumour spreading 5 May 21 / 58

  24. The push-pull protocol Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods’87 1. The ground is a simple connected graph. 2. At time 0, one vertex knows a rumour. 3. At each time-step 1 , 2 , . . . , every informed vertex sends the rumour to a random neighbour (PUSH); and every uninformed vertex queries a random neighbour about the rumour (PULL). Abbas (Waterloo) Rumour spreading 5 May 22 / 58

  25. The push-pull protocol Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods’87 1. The ground is a simple connected graph. 2. At time 0, one vertex knows a rumour. 3. At each time-step 1 , 2 , . . . , every informed vertex sends the rumour to a random neighbour (PUSH); and every uninformed vertex queries a random neighbour about the rumour (PULL). Remark 1. Vertices may call the same neighbour in consecutive steps. Remark 2. If a vertex receives the rumour at time t , it starts passing it from time t + 1. Spread Time: the first time everyone knows the rumour. Abbas (Waterloo) Rumour spreading 5 May 22 / 58

  26. Example: a star push protocol: n ln n rounds push-pull protocol: 1 or 2 rounds Abbas (Waterloo) Rumour spreading 5 May 23 / 58

  27. Example: a path Abbas (Waterloo) Rumour spreading 5 May 24 / 58

  28. Example: a path inform − time ( 0 ) = 0 Abbas (Waterloo) Rumour spreading 5 May 24 / 58

  29. Example: a path inform − time ( 0 ) = 0 inform − time ( 1 ) = 1 Abbas (Waterloo) Rumour spreading 5 May 25 / 58

  30. Example: a path inform − time ( 0 ) = 0 inform − time ( 1 ) = 1 inform − time ( 2 ) = 1 + min { Geo ( 1 / 2 ) , Geo ( 1 / 2 ) } = 1 + Geo ( 3 / 4 ) Abbas (Waterloo) Rumour spreading 5 May 26 / 58

  31. Example: a path inform − time ( 0 ) = 0 inform − time ( 1 ) = 1 inform − time ( 2 ) = 1 + Geo ( 3 / 4 ) inform − time ( 3 ) = 1 + Geo ( 3 / 4 ) + Geo ( 3 / 4 ) Abbas (Waterloo) Rumour spreading 5 May 27 / 58

  32. Example: a path inform − time ( 0 ) = 0 inform − time ( 1 ) = 1 inform − time ( 2 ) = 1 + Geo ( 3 / 4 ) inform − time ( 3 ) = 1 + Geo ( 3 / 4 ) + Geo ( 3 / 4 ) inform − time ( 4 ) = 1 + Geo ( 3 / 4 ) + Geo ( 3 / 4 ) + 1 Abbas (Waterloo) Rumour spreading 5 May 28 / 58

  33. Example: a path inform − time ( 0 ) = 0 inform − time ( 1 ) = 1 inform − time ( 2 ) = 1 + Geo ( 3 / 4 ) inform − time ( 3 ) = 1 + Geo ( 3 / 4 ) + Geo ( 3 / 4 ) inform − time ( 4 ) = 1 + Geo ( 3 / 4 ) + Geo ( 3 / 4 ) + 1 E [ Spread Time ] = 2 + 2 × 4 / 3 = 14 / 3 Abbas (Waterloo) Rumour spreading 5 May 29 / 58

  34. Example: a path inform − time ( 0 ) = 0 inform − time ( 1 ) = 1 inform − time ( 2 ) = 1 + Geo ( 3 / 4 ) inform − time ( 3 ) = 1 + Geo ( 3 / 4 ) + Geo ( 3 / 4 ) inform − time ( 4 ) = 1 + Geo ( 3 / 4 ) + Geo ( 3 / 4 ) + 1 E [ Spread Time ] = 2 + 2 × 4 / 3 = 14 / 3 = 4 3 n − 2 ( versus 2 n − 3 for push ) Abbas (Waterloo) Rumour spreading 5 May 30 / 58

  35. Example: a complete graph push: log 2 n + ln n + o ( log n ) [Pittel’87] push-pull: ≤ log 3 n + o ( log n ) [Karp, Schindelhauer, Shenker, Vöcking’00] Abbas (Waterloo) Rumour spreading 5 May 31 / 58

  36. Other results on push-pull protocol 1. Barabasi-Albert preferential attachment graph has Spread Time Θ ( log n ) , PUSH alone has Spread Time poly ( n ) . 2. Random graphs with power-law expected degrees (a.k.a. the Chung-Lu model) with exponent ∈ ( 2 , 3 ) has Spread Time Θ ( log n ) . 3. If Φ is Cheeger constant (conductance) and α is the vertex expansion (vertex isoperimetric number), Spread Time ≤ C max { Φ − 1 log n , α − 1 log 2 n } . Abbas (Waterloo) Rumour spreading 5 May 32 / 58

  37. Let’s see some simulation results... Abbas (Waterloo) Rumour spreading 5 May 33 / 58

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend