rumour spreading
play

Rumour Spreading without the Network Alessandro Panconesi - PowerPoint PPT Presentation

Rumour Spreading without the Network Alessandro Panconesi Dipartimento di Informatica Joint work with: Pawel Brach, Alessandro Epasto, Piotr Sankowski THE STARS PEOPLE The INTERNET is an observatory of


  1. Rumour Spreading without the Network Alessandro Panconesi Dipartimento di Informatica Joint work with: Pawel Brach, Alessandro Epasto, Piotr Sankowski

  2. THE ¡STARS ¡

  3. PEOPLE ¡

  4. The ¡INTERNET ¡is ¡an ¡observatory ¡of ¡Crowds ¡

  5. Digital ¡Traces ¡

  6. The ¡Grand ¡Challenge ¡

  7. The Grand Challenge What can we reconstruct the original diffusion process from the huge, and yet scanty, digital traces?

  8. Rumour spreading, a case study

  9. Gossip: a very simple model

  10. Gossiping

  11. Gossiping

  12. Gossiping

  13. Gossiping

  14. Gossiping

  15. Gossiping

  16. Gossiping

  17. Gossiping Variants PUSH Node with information sends to a random neighbour

  18. Gossiping Variants PUSH Node with information sends to a random neighbour PULL Node without information asks a random neighbour

  19. Gossiping Variants PUSH-PULL PUSH Node with information sends to a random neighbour PULL Node without information asks a random neighbour

  20. The problem that we want to solve RUMOUR SPREADING WITHOUT THE NETWORK

  21. Beyond ¡the ¡asymptoBc ¡tradiBon ¡ Can we predict the number of informed nodes at time t on the basis of the degree distribution alone?

  22. Beyond ¡the ¡asymptoBc ¡tradiBon ¡ Can we predict the average number of informed nodes at time t on the basis of the degree distribution alone?

  23. Beyond ¡the ¡asymptoBc ¡tradiBon ¡ Can we predict the average number of informed nodes at time t on the basis of the degree distribution alone for real social networks ?

  24. The Master Plan

  25. The master plan • Develop in a rigorous way a space- efficient simulator for a model • Test it with real networks

  26. THE MODEL

  27. Configuration Model D = ( )

  28. Configuration Model D = ( )

  29. Configuration Model D = ( )

  30. Configuration Model D = ( )

  31. Configuration Model D = ( )

  32. Configuration Model D = ( )

  33. Configuration Model D = ( ) Is this a good model for social networks?

  34. Configuration Model D = ( ) Is this a good model for social networks? No, but this is good!

  35. Problem ¡restatement ¡ Can we predict the average number of informed nodes at time t on the basis of the degree distribution alone for the configuration model ?

  36. Problem ¡restatement ¡ Can we predict the average number of informed nodes at time t on the basis of the degree distribution alone for the configuration model ? YES, OF COURSE!

  37. Naive Simulator • On input D = (d 1 ,d 2 ,…,d n ), pick a random graph G(D) from the configuration model • Pick a random source and simulate rumour spreading • Compute averages • Repeat

  38. THE SPACE-EFFICIENT SIMULATOR

  39. The Efficient Simulator D = ( )

  40. The Efficient Simulator D = ( )

  41. The Efficient Simulator D = ( )

  42. The Efficient Simulator D = ( )

  43. The Efficient Simulator D = ( )

  44. The Efficient Simulator D = ( )

  45. The Efficient Simulator D = ( )

  46. The Efficient Simulator D = ( )

  47. The Efficient Simulator D = ( )

  48. The Efficient Simulator D = ( )

  49. The Efficient Simulator D = ( ) This is space-efficient because we do not need to keep the stubs, only their number

  50. The Efficient Simulator D = ( ) For undirected networks further optimization is possible. The resulting savings are spectacular

  51. Dealing with aggregates Rank(u) = #unused stubs of node u M[i,j] = #nodes of degree j and rank j DxD matrix

  52. Dealing with aggregates

  53. Theorem • The Efficient Simulator is a correct implementation of the Naïve Simulator-- they compute the same averages

  54. A Picture is Worth a Thousand Words

  55. EXPERIMENTS WITH REAL NETWORKS

  56. Experiments ¡with ¡real ¡networks ¡ ? Input: ¡the ¡degree ¡ Efficient ¡simulator ¡for ¡ distribuBon ¡of ¡a ¡real ¡ the ¡configuraBon ¡model ¡ network ¡

  57. The Good.. Epinions

  58. The Good..

  59. The Bad..

  60. and the Ugly

  61. Different behaviours • Friendship and trust networks: Epinions, Facebook, LiveJournal, RenRen, and Slashdot • Collaboration and Email networks: AstroPh, CondMatt, DBLP and WikiTalk; EuAll and Enron • Non-social newtorks: Web, Amazon

  62. Courtesy of Silvio Lattanzi MEASURING RANDOMNESS

  63. Sudden drops

  64. To summarize • We developed a space-efficient predictor for the configuration model • Surprisingly, this works quite well for real social networks too

  65. Future work • Look for more efficient predictors, eg systems of differential equations • Go beyond averages • Extend to other diffusion processes?

  66. THANKS

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend