random planar map
play

Random Planar Map A random triangulation [Courtesy of N. Curien]. - PowerPoint PPT Presentation

CLE E XTREME N ESTING & L IOUVILLE Q UANTUM G RAVITY Bertrand Duplantier Institut de Physique Th eorique Universit e Paris-Saclay, France G EOMETRY , A NALYSIS AND P ROBABILITY A Symposium in Honor of P ETER W. J ONES KIAS, Seoul, Korea


  1. CLE E XTREME N ESTING & L IOUVILLE Q UANTUM G RAVITY Bertrand Duplantier Institut de Physique Th´ eorique Universit´ e Paris-Saclay, France G EOMETRY , A NALYSIS AND P ROBABILITY A Symposium in Honor of P ETER W. J ONES KIAS, Seoul, Korea • May 8 – 12, 2017 Joint work with • Ga¨ etan Borot (MPI Bonn) & J´ er´ emie Bouttier (ENS-Lyon)

  2. Random Planar Map A random triangulation [Courtesy of N. Curien].

  3. Random Planar Map A random triangulation [Courtesy of N. Curien]. Continuum limit: The Brownian Map [Le Gall ’11; Miermont ’11]

  4. Random Planar Map & Conformal Map [Courtesy of N. Curien] Left: A random triangulation of the sphere. Right: Conformal map to the sphere. In the continuum scaling limit: Liouville Quantum Gravity A.M. Polyakov ’81

  5. Random Planar Map & Statistical Model Percolation hulls [Courtesy of N. Curien].

  6. L IOUVILLE QG R ANDOM M EASURE µ = “ e γ h dz ” ♦

  7. Gaussian Free Field (GFF) [Courtesy of J. Miller] � � − 1 2 ( h , h ) ∇ Distribution h with Gaussian weight exp , and Dirichlet inner product in domain D � ( 2 π ) − 1 D ∇ f 1 ( z ) · ∇ f 2 ( z ) dz ( f 1 , f 2 ) ∇ : = � � = ( h , f 1 ) ∇ , ( h , f 2 ) ∇ Cov

  8. L IOUVILLE Q UANTUM M EASURE � � ε γ 2 / 2 dz , γ h ε ( z ) µ γ : = lim ε → 0 exp where h ε ( z ) is the GFF average on a circle of radius ε ; converges weakly for γ < 2 to a random measure, denoted by µ γ = e γ h ( z ) dz , and singular w. r. t. Lebesgue measure. [Høegh-Krohn ’71; Kahane ’85; D. & Sheffield ’11] For γ = 2 , the renormalized one, � ε γ 2 / 2 � � � � log ( 1 / ε ) γ h ε ( z ) γ = 2 dz , exp converges, as ε → 0 , to a positive non-atomic random measure. [D., Rhodes, Sheffield, Vargas ’14]

  9. Scaling Exponents of (Random) Fractals SAW in half plane - 1,000,000 steps ε x 2 ε x ~ [Courtesy of T. Kennedy & J. Miller] Probabilities & Hausdorff Dimensions (e . g ., SLE κ ) P ≍ ε 2 x , P ≍ ε ˜ � (= 1 + κ / 8 ) x , d = 2 − 2 x P ≍ δ ∆ , � ∆ P ≍ δ � δ -Quantum Ball:

  10. K NIZHNIK , P OLYAKOV , Z AMOLODCHIKOV ’88 x and ∆ (˜ ∆ ) are related by the KPZ formula x and ˜ � � 1 − γ 2 ∆ + γ 2 x = U γ ( ∆ ) : = 4 ∆ 2 4 Kazakov ’86; D. & Kostov ’88 [Random matrices] David; Distler & Kawai ’88 [Liouville field theory] KPZ Theorem – D. & Sheffield ’11 Benjamini & Schramm ’09; Rhodes & Vargas ’11 [Hausdorff dimension] David & Bauer ’09; Berestycki, Garban, Rhodes, Vargas ’14 [Heat kernel]

  11. O ( n ) -Loop Model on a Random Planar Map g h 1 α Disk triangulation and local weights ( α = 1 ). Z ℓ = ∑ u V ( C ) w ( C ) , w ( C ) = n L g T 1 h T 2 ; C • Sum over all configurations C of a disk of fixed perimeter ℓ • u auxiliary weight per vertex , V ( C ) total number of vertices ( volume ) • T 1 , T 2 numbers of empty or occupied triangles • number of loops L of C weighted by n ∈ [ 0 , 2 ] .

  12. Phase Diagram h supercritical dense dilute generic subcritical g Phase diagram of the O ( n ) -loop model ( n ∈ [ 0 , 2 ] ) on a random map. For u = 1 , a line of critical points separates the subcritical and supercritical phases. Critical points may be in three different universality classes : generic , dilute and dense .

  13. Random Map O ( n ) Nesting Theorem [Borot, Bouttier, D. ’16] Fix ( g , h ) and n ∈ ( 0 , 2 ) such that the model reaches a dilute or dense critical point for the vertex weight u = 1 . In the ensemble of random pointed disks of volume V and perimeter L , the probability distribution of the number N of separating loops between the marked point and the boundary behaves for large V as: � � � . N = c ln V � π J ( p ) ( sphere ) , ∼ ( ln V ) − 1 2 V − c � V , L = ℓ P p π � � � . N = c ln V � 2 π J ( p ) ( disk ) , c ∼ ( ln V ) − 1 2 V − c 2 ℓ � V , L = V P p 2 π with ℓ > 0 fixed, and the large deviations function � � 2 p J ( p ) = p ln � + arccot ( p ) − arccos ( n / 2 ) ; n 1 + p 2 � n � c = 1 ( dilute ) or c = 1 / [ 1 − 1 ] ( dense ) decreases from 2 to 1 as π arccos 2 n increases from 0 to 2.

  14. Large Deviations Function J ( p ) p √ J ( p ) for n = 1 (Ising & Percolation), n = 2 (FK Ising), √ n = 3 (3-state Potts), n = 2 (4-state Potts & CLE 4 ).

  15. The Conformal Loop Ensemble (CLE) [Sheffield ’09, Sheffield & Werner ’12] The critical O ( n ) -model on a regular planar lattice is predicted to converge in the continuum limit to SLE κ /CLE κ , for   κ ∈ ( 8 / 3 , 4 ] , dilute phase � � 4 π / κ n = − 2cos , n ∈ ( 0 , 2 ] ,  κ ∈ [ 4 , 8 ) , dense phase , (Loop-erased random walk & spanning trees [Lawler, Schramm, Werner] , Ising & percolation [Smirnov] , GFF contour lines [Schramm-Sheffield] .) The same is expected for the O ( n ) -model on a random planar map , the random area measure becoming in the critical scaling limit the Liouville quantum measure µ γ for √ √ γ = min { κ , 4 / κ } .

  16. Nesting in the Conformal Loop Ensemble (CLE) ερ ε 1 N z ( ε ) is the number of nested loops of a CLE κ , κ ∈ ( 8 / 3 , 8 ) surrounding the ball B ( z , ε ) in the unit disk.

  17. Extreme nesting in CLE [Miller, Watson & Wilson ’14] Let N z ( ε ) be the number of loops of a CLE κ , κ ∈ ( 8 / 3 , 8 ) surrounding the ball B ( z , ε ) , and Φ ν the set of points z where ε → 0 N z ( ε ) / ln ( 1 / ε ) = ν . lim dim H Φ ν = 2 − γ κ ( ν ) γ κ ( ν ) = νΛ ∗ κ ( 1 / ν ) , ν � 0; Λ ∗ ( λ x − Λ κ ( λ )) κ ( x ) : = sup λ ∈ R   − cos ( 4 π / κ )   Λ κ ( λ ) = ln ��   � � � 2 + 8 λ π 1 − 4 cos κ κ Moment generating function of the loop log-conformal radius [Cardy & Ziff ’02; Kenyon & Wilson ’04; Schramm, Sheffield & Wilson ’09]

  18. Conformal Loop Ensemble CLE κ , κ ∈ ( 8 / 3 , 8 ) ερ ε 1 U the connected component containing 0 in the complement D \ L of the largest loop L surrounding 0 in D . Cumulant generating function of T = − ln ( CR ( 0 , U )) [Schramm, Sheffield, Wilson ’09]   � e λ T � − cos ( 4 π / κ )   κ − 3 κ Λ κ ( λ ) : = ln E   , λ ∈ ( − ∞ , 1 − 2  � � 1 / 2 � = ln 32 ) . ��  � 2 + 8 λ π 1 − 4 cos κ κ

  19. Large Deviations Function (2 π ) 2 κ γ κ ( ν ) (2 π ) 2 κ ν CLE κ nesting large deviations function , γ κ ( ν ) / κ , √ for κ = 3 or 6 (Ising / Percolation, n = 1), κ = 16 / 3 (FK-Ising, n = 2), √ κ = 25 / 4 (3-state Potts, n = 3), κ = 4 (GFF contour lines, n = 2)

  20. Multifractal Spectrum 2 − γ κ ( ν ) ν CLE κ nesting Hausdorff dimension , dim H Φ ν = 2 − γ κ ( ν ) , for κ = 3 (Ising), κ = 4 (GFF contour lines), κ = 6 (Percolation).

  21. Large Deviations Euclidean case: for a ball of radius ε � � N z ≈ ν ln ( 1 / ε ) � � N z ≈ ν t | t � ≍ ε γ κ ( ν ) = exp [ − t γ κ ( ν )] . � ε = P P Liouville Quantum Gravity: � t : = − ln ε ; A : = − γ − 1 ln δ , δ : = B ( z , ε ) µ γ ( quantum ball ) Conditioned on δ , hence A , perform the convolution � ∞ � N z | t � P Q ( N z | A ) : = P ( t | A ) dt , 0 P where P ( t | A ) is the probability distribution of the random Euclidean log-radius t , given the quantum log-radius A .

  22. Probability Distribution [D.– Sheffield ’09] AP ( ) t A 1.4 1.2 1 0.8 0.6 0.4 0.2 t /A 1 2 3 4 5 � γ = 8 / 3 [ A = 2; 20; 200 ] � � � � 2 A − 1 √ P ( t | A ) = A − a γ t 2 π t 3 exp 2 t � t = − ln ε , A = − γ − 1 ln δ , δ = B ( z , ε ) µ γ a γ : = 2 / γ − γ / 2

  23. Quantum Large Deviations t = − ln ε , A = − γ − 1 log δ ( quantum ball ) , N ≈ − ν ln ε = ν t , N ≈ − p ln δ = γ pA , which implies ν t = γ pA . The above convolution then yields, for A → + ∞ , � � � ∞ − ( A − a γ t ) 2 dt A P Q ( N z ≈ γ pA | A ) ≍ − γ κ ( ν ) t √ 2 π t 3 exp 2 t 0 ≍ exp [ − A Θ ( p )] ( saddle point at constant ν t ) Θ ( p ) is the large deviations function for the loop number around a δ -quantum ball to scale as p log ( 1 / δ ) .

  24. Legendre Transform & KPZ In the plane, the Legendre transform gave ν = ∂Λ κ ( λ ) γ κ ( ν ) = λ − νΛ κ ( λ ) , 1 . ∂λ In Liouville Quantum Gravity ∂Λ κ ( λ ) ( λ / 2 ) − p Λ κ ( λ ) , 1 Θ ( p ) = U − 1 p = , γ ∂ U − 1 ( λ / 2 ) γ �� � ( λ / 2 ) : = γ + 2 λ − a γ / γ is the inverse KPZ where U − 1 a 2 γ function, with � √ √ � γ = min κ , 4 / κ , a γ = 2 / γ − γ / 2 .

  25. Theorem [Borot, Bouttier, D. ’16] In Liouville quantum gravity , the cumulant generating function Λ κ , with κ ∈ ( 8 / 3 , 8 ) , is transformed into the quantum one, Λ Q κ : = Λ κ ◦ 2 U γ , where U γ is the KPZ function with γ = min {√ κ , 4 / √ κ } . Its Legendre-Fenchel transform is � � Λ Q ⋆ λ x − Λ Q κ ( λ ) κ ( x ) : = sup . λ ∈ R The quantum nesting distribution in the disk is then, for δ → 0 , P Q ( N z ≈ p ln ( 1 / δ ) | δ ) ≍ δ Θ ( p ) ,  p Λ Q ⋆  κ ( 1 / p ) , if p > 0   Θ ( p ) = 3 / 4 − 2 / κ if p = 0 and κ ∈ ( 8 / 3 , 4 ]    1 / 2 − κ / 16 if p = 0 and κ ∈ [ 4 , 8 ) .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend