random matrix ensembles for quantum spins and decoherence
play

Random matrix ensembles for quantum spins and decoherence Franois - PowerPoint PPT Presentation

Random matrix ensembles for quantum spins and decoherence Franois David IPhT Saclay & CNRS J. Stat. Mech. (2011) P01001 + work in progress In honor of T om Spencer Susy & Random Matrices, IHP 3-5 avril 2012 1 mercredi 11 avril


  1. Random matrix ensembles for quantum spins and decoherence François David IPhT Saclay & CNRS J. Stat. Mech. (2011) P01001 + work in progress In honor of T om Spencer Susy & Random Matrices, IHP 3-5 avril 2012 1 mercredi 11 avril 12

  2. Plan 1. The model: quantum spin + random matrices 2. The evolution functional: exact solution 3. Evolution of coherent and incoherent states 4. Quantum diffusion regime & initial conditions: to be or not to be Markovian 5. Extensions: spin clusters 2 mercredi 11 avril 12

  3. Plan 1. The model: quantum spin + random matrices 2. The evolution functional: exact solution 3. Evolution of coherent and incoherent states 4. Quantum diffusion regime & initial conditions: to be or not to be Markovian 5. Extensions: spin clusters Apologies No disorder .... No SUSY ... 2 mercredi 11 avril 12

  4. Decoherence “large” external “small” quantum ⊗ system system | ψ � | φ � E S • Decoherence = disappearance - or rather inobservability - of the quantum correlations between • some states of a system s, through its (weak) coupling with an external system E (heat bath, environment, etc.) • or more generally a few “individualized” degrees of freedom (pointer states, semi-classical variables, collective coordinates, etc.) of a large isolated macroscopic system ( a 1 | ψ 1 ⇤ + a 2 | ψ 2 ⇤ ) � | φ ⇤ ⇥ a 1 | ψ 0 1 ⇤ � | φ 0 1 ⇤ + a 2 | ψ 0 2 ⇤ � | φ 0 2 ⇤ 3 mercredi 11 avril 12

  5. • I shall present a simple toy model • based on very standard ideas: • spin and coherent states (Takahashi & Shibata, 1975) • random matrix hamiltonians (Mello, Pereyra & Kumar, 1988) • which have been much applied for the spin 1/2 case ( j = 1/2 , Q-bit, 2 level system) • but some (relatively) novel aspects • general spin j (from quantum to classical spin) • generic interaction (novel random matrix ensembles) • It allows to study analytically several aspects decoherence • in particular the crossover between unitary quantum dynamics and stochastic diffusion in classical phase space 4 mercredi 11 avril 12

  6. I - The model A quantum SU(2) spin S + an external system E spin = j dim( H S ) = 2 j + 1 dim( H E ) = N � j Single spin: For large spin j → ∞ the spin becomes a classical object Classical phase space is the 2-sphere The coherent states behave as quasi classical states n · � | � n � ( � S ) | � n � = j | � n � , Dynamics of the coupled spin: H = H S ⊗ 1 E + H SE + 1 S ⊗ H E The Hamiltonians: • Slow spin dynamics H S = 0 (no dissipative & thermalisation effects) • Dynamic of the external system generic H E → H SE 5 mercredi 11 avril 12

  7. The interaction Hamiltonian The interaction hamiltonian is given by a Gaussian random matrix ensemble, with the only constraint that the ensemble in invariant under SU (2) × U ( N ) spin external system For this, go to Wigner representation of spin operators αβ � W ( lm ) ⇥ r α | H | s β ⇤ = H rs j ⊗ j = 0 ⊕ 1 ⊕ · · · ⊕ 2j αβ ⌃ j � ⇥ j ⇤ 2 l + 1 l j W ( l,m ) ⌅ � A rs = � r | A | s ⇥ = A rs � A s r m 2 j + 1 � r,s = − j W ( lm ) It is enough to take for the independent gaussian random αβ variables with zero mean and variance depending only on l and with the Hermiticity constraint. ⇣ ⌘ ( l, − m ) W ( lm ) W ( l,m ) = ( − 1) m W = ∆ ( l ) Var βα αβ αβ 6 mercredi 11 avril 12

  8. We thus get a matrix ensemble characterized by the variances ∆ = { ∆ ( l ) , l = 0 , 1 , · · · 2 j } NB: The l=m=0 term represents the Hamiltonian H E With this GU(2)xU( N ) ensemble, the 2-points correlator is α δ r u H rs αβ H tu γδ = δ αδ δ βγ D rs,tu s t γ β 2 j ⇤ ⇤ ⌅ j ⇧ ⌅ j ⇧ ∆ ( l ) 2 l + 1 l j l j ⇤ ⇤ ] = δ s − r,t − u D rs,tu = ⇤ ⇤ t u − t u s r − s r 2 j + 1 ⇤ ⇤ l =0 This representation allows to use diagrammatic rules to resum perturbative expansions in the interaction. Standard ribbon propagator for the N indices, more complicated structure for the spin indices, but still planar. 7 mercredi 11 avril 12

  9. II - The evolution functional separable state → entangled state → mixed state for S | ψ 0 ⌅ � | φ 0 ⌅ ⇥ | Φ ( t ) ⌅ , ρ S ( t ) = tr E ( | Φ ( t ) ⌅⇤ Φ ( t ) | Evolution functional e − itH ( · ⊗ ρ E (0)) e itH � � ρ S ( t ) = M ( t ) · ρ S (0) , M ( t ) = tr E For simplicity, start from a random state | ψ E � Then the evolution functional is I I dx dy 2 i π e it ( x − y ) G ( x, y ) M ( t ) = 2 i π  � G ( x, y ) = 1 1 1 N tr E x − H ⊗ S y − H 8 mercredi 11 avril 12

  10. We take the large N limit (large external system) and make the average over H , assuming self averaging as usual. G ( x, y ) is given by a sum of planar diagrams of the standard form (rainbow diagrams) r s t u It is useful to start from the single resolvent  � H ( x ) = 1 1 N tr E x − H H ( x ) is given by a sum of planar rainbow diagrams D + .... r s r s r s r s 9 mercredi 11 avril 12

  11. These resolvents obey recursion relations � = + u v v u s r s r s r t t + = + r s t u r s t u r v w x s t u r v s t w x u Thanks to the SU(2) invariance, the solution of these equations takes a simple diagonal form in the Wigner representation H rs ( x ) = δ rs b H ( x ) ( l 1 ,m 1 ) , ( l 2 ,m 2 ) ( x, y ) = δ l 1 l 2 δ m 1 + m 2 , 0 ( − 1) m 1 b G ( l ) ( x, y ) G rs,tu ( x, y ) → W G with ✓ ◆ q 1 Resolvent for a single Wigner b x 2 − 4 b H ( x ) = ∆ (0) x − 2 b matrix (semi circle law) ∆ (0) 2 j X 2 l + 1 b ∆ (0) = N 2 j + 1 ∆ ( l ) l =0 10 mercredi 11 avril 12

  12. Factorization The evolution functional for the density matrix of the spin ρ S ( t ) takes a simple diagonal form in the Wigner representation basis ρ S rs ( t ) → W ( l,m ) ( t ) = c M ( l ) ( t ) · W ( l,m ) (0) S S with the kernel given by a universal decoherence function ⌥ ⌥ M ( l ) ( t ) = M ( t/ τ 0 , Z ( l )) . depending on a rescaled time and a factor Z(l) t 0 = t/ τ 0 ⌃ ∆ ( l ) ⌃ Z ( l ) = τ 0 = 1 / ∆ (0) ⌃ ∆ (0) is the dynamical time scale of the system (more later) τ 0 The parameter Z(l) depends on the spin sector considered. 11 mercredi 11 avril 12

  13. The Z(l) function The l dependence of the factor Z(l) depends on the initial variances of the GU(2) ensemble for the Hamiltonian. ⇥ j ⇤ 2 j ⌃ l ⇥ j ∆ ( l ⇥ )(2 l ⇥ + 1)( − 1) 2 j + l � + l ⌥ ∆ ( l ) = N 6-j symbol j j l l � =0 Z ( l ) = b ∆ ( l ) / b ∆ (0) Z ( l ) ∈ [ − 1 , 1] Z(l) is maximal for l=0 Z(l) takes a scaling form in the large spin limit Z ( l ) = b ∆ ( l ) / b ∆ (0) → Y ( x ) with x = l/ 2 j � l 0 Its small l behavior is quadratic in l ∆ ( l � ) (2 l � + 1) l � ( l � + 1) ¯ Z ( l ) = 1 � l ( l + 1) 1 D 0 l � =1 j ( j + 1) + · · · , D 0 = � 4 l 0 ∆ ( l � )(2 l � + 1) ¯ 12 l � =0 mercredi 11 avril 12

  14. Example 1: l= 0 and 1 channels only coupling distribution D H l L = 8 1, 1 < total spin j = 8 1, 2, 4, 8, 16, 32, 64, 128 < from blue to red Z H l L 1.0 0.5 l ê 2j 0.2 0.4 0.6 0.8 1.0 - 0.5 - 1.0 13 mercredi 11 avril 12

  15. Example 2: l= 0 to 12 channels coupling distribution D H l L = 8 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 < total spin j = 8 24, 48, 96, 192, 384, 768 < from blue to red Z H l L 1.0 0.5 l ê 2j 0.2 0.4 0.6 0.8 1.0 - 0.5 - 1.0 14 mercredi 11 avril 12

  16. Example 3: l= 0 to 12 but even only channels coupling distribution D H l L = 8 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 < coupling distribution D H l L = 8 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 < total spin j = 8 24, 48, 96, 192, 384, 768 < from blue to red total spin j = 8 24, 48, 96, 192, 384, 768 < from blue to red Z H l L Z H l L 1.0 1.0 0.5 0.5 l ê 2j l ê 2j 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0 - 0.5 - 0.5 - 1.0 - 1.0 15 mercredi 11 avril 12

  17. Example 4: l= 0 to 10 channels, random variances coupling distribution D H l L = 8 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 < coupling distribution D H l L = 8 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 < coupling distribution D H l L = 8 16., 0.99, 0.94, 0.44, 0.3, 0.94, 0.65, 0.96, 0.64, 0.82 < total spin j = 8 24, 48, 96, 192, 384, 768 < from blue to red total spin j = 8 24, 48, 96, 192, 384, 768 < from blue to red total spin j = 8 9, 18, 36, 72, 144, 288, 576 < from blue to red Z H l L Z H l L Z H l L 1.0 1.0 1.0 0.5 0.5 0.5 l ê 2j l ê 2j l ê 2j 0.2 0.4 0.6 0.8 1.0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0 - 0.5 - 0.5 - 0.5 - 1.0 - 1.0 - 1.0 16 mercredi 11 avril 12

  18. The decoherence function is a generalized hypergeometric function � � √ dx dy H ( x ) H ( y ) H ( x ) = 1 2i π e − i t ( x − y ) x 2 − 4) M ( t, Z ) = , 2( x − 2i π 1 − Z H ( x ) H ( y ) m ⇥ ⇥ ∞ 2(2 m + 1)( n + 1) 2 (2 m )! t 2 m z n ( − 1) m + n ) = m !( m + 1)!( m − n )!( m + n + 2)! m =0 n =0 large time limit: fast algebraic decay with t except for Z close to unity Z t 17 mercredi 11 avril 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend