radiometry brdfs
play

Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Computer - PowerPoint PPT Presentation

Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Todays Lecture Radiometry Physics of light BRDFs How materials reflects


  1. Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1

  2. Today’s Lecture • Radiometry • Physics of light • BRDFs • How materials reflects light CS295, Spring 2017 Shuang Zhao 2

  3. Radiometry CS295: Realistic Image Synthesis Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao 3

  4. Geometric Optics • Light travels in straight lines • Unpolarized • Ray properties: • Wavelength (i.e., color) • Intensity CS295, Spring 2017 Shuang Zhao 4

  5. Background: Solid angle, spherical coordinate Physically Based Rendering: Radiometry CS295, Spring 2017 Shuang Zhao 5

  6. Background: Hemispheres • Hemisphere = 2D surface • Direction = point on (unit) sphere CS295, Spring 2017 Shuang Zhao 6

  7. Background: Solid Angles 2D 3D Full circle = 2 π radians Full sphere = 4 π steradians CS295, Spring 2017 Shuang Zhao 7

  8. Background: spherical coordinates • Direction = point on (unit) sphere For unit sphere ( r = 1 ): CS295, Spring 2017 Shuang Zhao 8

  9. Background: spherical coordinates • Direction = point on (unit) sphere = direction vector Defines a measure over (hemi)sphere CS295, Spring 2017 Shuang Zhao 9

  10. Background: spherical coordinates • Example: solid angle of hemisphere CS295, Spring 2017 Shuang Zhao 10

  11. Power • Energy • Symbol: Q ; unit: Joules • Power: Energy per unit time (d Q /d t ) • Aka. “radiant flux” • Symbol: P or Ф ; unit: Watts (Joules per second) • All further quantities are derivatives of power • “flux densities” CS295, Spring 2017 Shuang Zhao 11

  12. Irradiance & Radiosity • Power per unit area (d Ф /d A ) • i.e., area density of power • Defined with respect to a surface • Symbol: E ; unit: W / m 2 • Measureable as power on a small-area detector Irradiance Radiosity CS295, Spring 2017 Shuang Zhao 12

  13. Intensity • Power per unit solid angle (d Ф /d ω ) • i.e., solid angle density of power • Normally used for point sources • Symbol: I ; units: W / sr • For uniform source: CS295, Spring 2017 Shuang Zhao 13

  14. Radiance • Radiant energy at x in direction ω : • A 5D function : Power • per projected surface area • per solid angle • Unit: Watt / (m 2 sr) CS295, Spring 2017 Shuang Zhao 14

  15. Why is radiance important? • Invariant along a straight line (in vacuum) CS295, Spring 2017 Shuang Zhao 15

  16. Invariant of Radiance Equal! CS295, Spring 2017 Shuang Zhao 16

  17. Invariant of Radiance • Take-home message: • is a well-defined measure on the space of lines CS295, Spring 2017 Shuang Zhao 17

  18. Projected Area and Solid Angle θ CS295, Spring 2017 Shuang Zhao 18

  19. Why is radiance important? • Response of a sensor (camera, human eye) is proportional to radiance • Pixel values in image proportional to radiance received from that direction CS295, Spring 2017 Shuang Zhao 19

  20. Wavelength Dependencies • All radiometric quantities depend on wavelength λ • E.g., spectral radiance: • Radiance: CS295, Spring 2017 Shuang Zhao 20

  21. Relationships (Bottom-Up) • Radiance is the fundamental quantity • Power: • Irradiance/radiosity: CS295, Spring 2017 Shuang Zhao 21

  22. Example: Diffuse Emitter • Diffuse emitter: light source with equal radiance ( L ) everywhere CS295, Spring 2017 Shuang Zhao 22

  23. Example: Near vs. Far • Two identical light sources A and B • The sensor receives more power from A because it covers a greater solid angle Larger solid angle A B Smaller solid angle CS295, Spring 2017 Shuang Zhao 23

  24. BRDFs CS295: Realistic Image Synthesis Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao 24

  25. Reflectance Models • The B idirectional R eflectance D istribution F unction (BRDF) CS295, Spring 2017 Shuang Zhao 25

  26. Properties of BRDF • Reciprocity: • Therefore “bidirectional”! • Notation CS295, Spring 2017 Shuang Zhao 26

  27. Properties of BRDF • Nonnegativity: • Conservation of energy: CS295, Spring 2017 Shuang Zhao 27

  28. BRDF models geometry Micro- Somewhere in between (Very) rough Smooth Ideal diffuse Ideal specular More general (Lambertian) CS295, Spring 2017 Shuang Zhao 28

  29. Ideal Diffuse BRDF CS295, Spring 2017 Shuang Zhao 29

  30. Ideal Specular BRDF is the Dirac delta function satisfying: CS295, Spring 2017 Shuang Zhao 30

  31. Microfacet BRDF Normal Shadowing & distrb. masking Fresnel term where CS295, Spring 2017 Shuang Zhao 31

  32. Fresnel Reflection [www.scratchpixel.com] CS295, Spring 2017 Shuang Zhao 32

  33. Schlick's Approximation where The material’s refractive index CS295, Spring 2017 Shuang Zhao 33

  34. Normal Distribution Function • D( m ) controls the distrb. of micro-surface normal • Example: isotropic GGX where θ h is the angle between n and ω h , and β >0 controls surface roughness CS295, Spring 2017 Shuang Zhao 34

  35. Shadowing and Masking • Depends on normal distribution function D ( m ) • Captures self-occlusion at the micro-surface (inter-reflection ignored) • Example: isotropic GGX where with θ x being the angle between x and n (for all x ) CS295, Spring 2017 Shuang Zhao 35

  36. Generalization of microfacet BRDFs • Handling transmission [Walter et al. 2007] • Capturing inter-reflection [Heitz et al. 2016] No inter-reflection With inter-reflection CS295, Spring 2017 Shuang Zhao 36

  37. BRDF Mixtures • Linear combinations of multiple BRDFs • E.g., CS295, Spring 2017 Shuang Zhao 37

  38. More BRDFs [Montes & Ureña 2012] CS295, Spring 2017 Shuang Zhao 38

  39. More BRDFs • http://digibug.ugr.es/bitstream/10481/19751/1/r montes_LSI-2012-001TR.pdf CS295, Spring 2017 Shuang Zhao 39

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend