r t r t t r s
play

r t rt trs - PowerPoint PPT Presentation

r t rt trs history, and rsts The example of binary black-holes in Einstein-Maxwell-Dilaton (EMD) theory Nathalie


  1. ❚❤❡ ♣r♦❜❧❡♠ ♦❢ ♠♦t✐♦♥ ✐♥ ❣r❛✈✐t② t❤❡♦r✐❡s history, and ♥❡✇ ♣❡rs♣❡❝t✐✈❡s ✿ The example of binary black-holes in Einstein-Maxwell-Dilaton (EMD) theory Nathalie Deruelle, with F´ elix-Louis Juli´ e and Marcela C´ ardenas CNRS, APC-Paris Diderot Kyoto, 23 February 2018 – Typeset by Foil T EX – 1

  2. ❚❤❡ ♥❡✇ ❡r❛ ✐♥ ❛str♦♥♦♠② GW150914 : first observation of a BBH coalescence by LIGO GW170817: first observation of a BNS coalescence by LIGO/Virgo with EM counterparts Will allow to probe modified theories of gravity , in the strong-field regime near merger, an “important and doable problem, which is still in infancy” (to paraphrase Takashi Nakamura). – Typeset by Foil T EX – 2

  3. Needles in a haystack (from T. Damour conference, Hannover 2016) – Typeset by Foil T EX – 3

  4. “Knowing the chirp to hear it”... – Typeset by Foil T EX – 4 from L. Blanchet conference, Hannover 2016

  5. The “effective-one-body” (EOB) approach A. Buonanno and T. Damour, 1998 • maps the two-body general relativistic Post-Newtonian (PN) dynamics to the motion of a test particle in an effective SSS metric • defines a resummation of the PN dynamics to describe analytically the coalescence of 2 compact objects from inspiral to merger • is instrumental to build libraries of waveform templates for LIGO/Virgo z 2 / M h 15 0.2 10 0.1 5 t / M z 1 / M 2750 2800 2850 2900 2950 3000 - 15 - 10 - 5 5 10 15 - 5 - 0.1 - 10 - 0.2 - 15 Aim : extend the EOB approach to modified gravities – Typeset by Foil T EX – 5

  6. ❖✉t❧✐♥❡ ♦❢ t❤❡ t❛❧❦ 1. The Einstein-Maxwell-Dilaton (EMD) black hole as a simple example of a “hairy” black hole 2. The action for a binary EMD black hole system or, how to “skeletonize” hairy black holes 3. The (conservative) dynamics of an EMD black hole binary vs “state-of-the-art” in scalar-tensor theories and GR • Lagrangian and Hamiltonian for the relative motion • Mapping to an effective-one-body (EOB) hamiltonian • A first flavour of possible tests – Typeset by Foil T EX – 6

  7. References (all in arXiv) Thermodynamics sheds light on black hole dynamics Marcela C´ ardenas, F´ elix-Louis Juli´ e, Nathalie Deruelle, arXiv:1712.02672 On the motion of hairy black holes in EMD theories F´ elix-Louis Juli´ e, JCAP 1801 (2018) Reducing the 2-body problem in ST theories to the motion of a test particle : a ST-EOB approach F´ elix-Louis Juli´ e Phys.Rev. D97 (2018) no.2, 024047 Two body pb in ST theories as a deformation of GR : an EOB approach F´ elix-Louis Juli´ e, Nathalie Deruelle Phys.Rev. D95 (2017) 12, 124054 On conserved charges and thermodynamics of AdS4 dyonic BHs Marcela C´ ardenas, Oscar Fuentealba, Javier Matulich, JHEP 1605 (2016) Einstein-Katz action, variational principle, Noether charges and the thermodynamics of AdS-BHs Andr´ es Anabal´ on, Nathalie Deruelle, F´ elix-Louis Juli´ e, JHEP 1608 (2016) – Typeset by Foil T EX – 7

  8. ❚❤❡ ❊✐♥st❡✐♥✲▼❛①✇❡❧❧✲❉✐❧❛t♦♥ ✭❊▼❉✮ ❜❧❛❝❦ ❤♦❧❡ – Typeset by Foil T EX – 8

  9. Isolated EMD black holes G. W. Gibbons 1982, GWG and K. i. Maeda 1988, GWG 1996 D. Garfinkle, G. T. Horowitz and A. Strominger 1991 Vacuum Einstein-Maxwell-dilaton action of gravity d 4 x √− g � R − 2 g µν ∂ µ ϕ ∂ ν ϕ − e − 2 aϕ F 2 � ´ 16 π I vac [ g µν , A µ , ϕ ] = Field equations : µ F νλ − 1 R µν = 2 ∂ µ ϕ ∂ ν ϕ + 2 e − 2 aϕ � 4 g µν F 2 � F λ e − 2 aϕ F µν � � ϕ = − 1 2 e − 2 aϕ F 2 � D µ = 0 , Static, spherically symmetric, solutions depend a priori on 5 integration constants. “Electric” black hole solutions depend on only 3. For a = 1 : � − 1 dr 2 + r 2 � ds 2 = − dt 2 + 1 − r + 1 − r + 1 − r − d Ω 2 � � � � r r r � e ϕ ∞ r + r − 1 − r − ϕ = ϕ ∞ + 1 � � A t = − , A i = 0 , 2 ln 2 r r – Typeset by Foil T EX – 9

  10. EMD black hole thermodynamics (case a = 1 ) 1 Temperature : T = (or surface gravity κ = 2 πT ) 4 πr + � e ϕ ∞ r + r − Electric potential : Φ = A t ( r → ∞ ) − A t ( r + ) = 2 r + � � � 1 − r − Entropy : S = πr 2 A (or area : A = 4 S ; or M irr = 4 π ) + r + Associated global charges : � r + r − M = 1 2 r + − 1 e − ϕ ∞ ´ Q = , r − dϕ ∞ 2 2 (see M. Henneaux et al 2002,..., C´ ardenas et al 2016, Juli´ e et al 2016) The variations of S , Q , and M wrt r + , r − and ϕ ∞ , are such that TδS = δM − Φ δQ – Typeset by Foil T EX – 10

  11. ❚❤❡ ❛❝t✐♦♥ ❢♦r ❛ ❜✐♥❛r② ❊▼❉ ❜❧❛❝❦ ❤♦❧❡ s②st❡♠ – Typeset by Foil T EX – 11

  12. “Skeletonizing” an EMD black hole in GR : Mathisson 1931, Infeld 1950,... d 4 x √− g 1 R − 2 g µν ∂ µ ϕ ∂ ν ϕ − e − 2 aϕ F 2 � + I bh [Ψ , g µν , ϕ, A µ ] ´ � I = 16 π A µ dx µ ´ ´ I bh = − m ( ϕ ) ds + q Linear coupling to A µ , and q constant, to preserve U (1) symmetry ; m A ( ϕ ) : m � = const because ϕ cannot be “gauged away” (Eardley 1975, Damour Esposito-Farese 1992) Question : how are q and m ( ϕ ) related to the parameters characterizing the black hole, that is, r + , r − and ϕ ∞ ? Answer : by identifying the EMD black hole solution to that of the field equations for the skeletonized body above. F´ elix-Louis Juli´ e, 2017 – Typeset by Foil T EX – 12

  13. The “sensitivity” of an EMD black hole ds m ( ϕ ) δ (4) ( x − z ) (with T µν = u µ u ν ) ´ • Field equations √− g R µν = 2 ∂ µ ϕ∂ ν ϕ + e − 2 aϕ � − 1 2 g µν F 2 � T µν − 1 2 F µα F α � � +8 π 2 g µν T ν ds δ (4) ( x − z ) e − 2 aϕ F µν � u µ � ´ D ν = 4 πq √− g ds δ (4) ( x − z ) � ϕ = − a 2 e − 2 aϕ F 2 +4 π dm ´ √− g dϕ • Lowest order asymptotic solution in the body rest-frame : = − q e 2 ϕ ∞ , ϕ asym = ϕ ∞ − 1 , A asym � 2 m ∞ g asym dm � = η µν + δ µν dϕ | ∞ µν t r r r to be identified with the EMD black hole solution (case a = 1 ) : � e ϕ ∞ r , ϕ asym = ϕ ∞ − r − � r + , A asym r + r − g asym � = η µν + δ µν = − µν t r 2 2 r Hence a differential equation, with a unique solution � 2 e − ϕ ∞ | ∞ so that q 2 = 2 m dm r + r − r + = 2 m ∞ , r − = 2 dm dϕ e 2 ϕ | ∞ dϕ , q = � µ 2 + q 2 e 2 ϕ m ( ϕ ) = F´ elix-Louis Juli´ e, 2017 2 – Typeset by Foil T EX – 13

  14. The parameters of a skeletonized ( a = 1 ) EMD black hole � � µ 2 + q 2 e 2 ϕ r + r − 2 e − ϕ ∞ , r + = 2 m ∞ , r − = 2 dm q = dϕ | ∞ , and m ( ϕ ) = 2 Recall : the global charges and entropy of an EMD black hole are � � � r + r − e − ϕ ∞ , M = 1 1 − r − 2 r + − 1 r − dϕ ∞ , and S = πr 2 ´ Q = + 2 2 r + Hence Q = q is a constant : δQ = 0 . Also : δM = δm ∞ − dm dϕ δϕ | ∞ = 0 Our skeletonized BHs exchange no charge nor energy with their environment. Now, since TδS = δM − Φ δQ , the black hole entropy is also a constant. Therefore µ can be identified to a function of the BH entropy. Indeed : � � 4 π + e 2 ϕ S S 2 Q 2 µ = = ⇒ m ( ϕ ) = 4 π with (for an Einstein-Hilbert action) S = A 4 and M 2 irr = S 4 π C´ ardenas, Juli´ e, ND, 2018 – Typeset by Foil T EX – 14

  15. Hence, all in all, Skeletonized action for a binary EMD black hole system : d 4 x √− g 1 R − 2 g µν ∂ µ ϕ ∂ ν ϕ − e − 2 aϕ F 2 � � + I bbh [ g µν , ϕ, A µ ] ´ I = 16 π A µ dx µ I bbh = − � ´ m A ( ϕ ) ds A + � ´ A q A A A � 4 π + e 2 ϕ S A 2 Q 2 with q A = Q A and m A ( ϕ ) = (for a = 1 ) A where the charges Q A remain constant (true until coalescence) where the entropies S A also remain constant ( not true at coalescence). * The action I is the starting point to study the relative motion of the two black holes. – Typeset by Foil T EX – 15

  16. ❚❤❡ ✭❝♦♥s❡r✈❛t✐✈❡✮ ❞②♥❛♠✐❝s ♦❢ ❛♥ ❊▼❉ ❜❧❛❝❦ ❤♦❧❡ ❜✐♥❛r② Lagrangian and Hamiltonian for the relative motion – Typeset by Foil T EX – 16

  17. The 1st Post-Newtonian (1PN) Lagrangian of an EMD BH binary ds A m A ( ϕ ) δ (4) ( x − z A ) (with T µν u µ A u ν ´ • Field equations A = A ) √− g R µν = 2 ∂ µ ϕ∂ ν ϕ + e − 2 aϕ � − 1 2 g µν F 2 � µν − 1 2 F µα F α � T A 2 g µν T A � + 8 π � ν A δ (4) ( x − z A ) u µ e − 2 aϕ F µν � � ´ D ν = 4 πq A � ds A √− g A A δ (4) ( x − z A ) 2 e − 2 aϕ F 2 + 4 π � dm A � ϕ = − a ´ ds A √− g A dϕ • Work in harmonic and Lorenz gauges g 00 = − e − 2 U , g 0 i = − 4 g i , g ij = δ ij e 2 V Write : A t = δA t , A i = δA i , ϕ = ϕ ∞ + δϕ Weak field O ( v 2 ) ∼ O ( m/r ) iteration. • Solve and obtain ′∞ m ∞ A v i m � v 6 � � v 5 � V = U + O , g i = � + O , ϕ = ϕ ∞ + � r A + · · · , etc A A A A r A – Typeset by Foil T EX – 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend