r d effort in labs 5 and 6
play

R&D EFFORT IN LABS 5 AND 6 Anna Pla-Dalmau R&D Review - PowerPoint PPT Presentation

R&D EFFORT IN LABS 5 AND 6 Anna Pla-Dalmau R&D Review October 29, 2014 SCINTILLATION DETECTOR DEVELOPMENT Anna Pla-Dalmau Group leader Focus: wire chamber winding plastic scintillation extrusion R&D Interests:


  1. R&D EFFORT IN LABS 5 AND 6 Anna Pla-Dalmau R&D Review October 29, 2014

  2. SCINTILLATION DETECTOR DEVELOPMENT • Anna Pla-Dalmau – Group leader • Focus: – wire chamber winding – plastic scintillation extrusion • R&D Interests: – Wavelength shifting fiber and scintillator co-extrusion – Coatings for extruded scintillator – Radiation-resilient plastic scintillator – Neutron-sensitive plastic scintillator – Water-based liquid scintillator 2 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  3. SCINTILLATION DETECTOR DEVELOPMENT SCINTILLATOR EXTRUSIONS MINOS MINERVA generic shapes Mu2e 3 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  4. SCINTILLATION DETECTOR DEVELOPMENT • R&D • production FNAL-NICADD EXTRUSION LINE FACILITY SINCE 2003 – LAB 5 4 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  5. SCINTILLATION DETECTOR DEVELOPMENT EXTRUDED SCINTILLATOR SHIPMENTS: NOT JUST USA! 5 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  6. SCINTILLATION DETECTOR DEVELOPMENT EXTRUDED SCINTILLATOR SHIPMENTS – LIST: FNAL-NICADD LINE, OUTSIDE USA EARLY WORK • T2K • D0 - pioneer • PIERRE AUGER • STAR • MINOS • TRIUMF • K2K • JPARC • KEK FNAL-NICADD LINE, USA • INFN • MINERVA – PADOVA • DOUBLE CHOOZ – NAPOLI • T2K – BOLOGNA • MICE – TORINO • JLAB – GRAN SASSO • BELLE II 6 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  7. SCINTILLATION DETECTOR DEVELOPMENT – PLA-DALMAU I- WLS FIBER AND SCINTILLATOR CO- EXTRUSION – Proof of concept – shoe string: • Lab-size extruder from surplus - ALUMINUM DIE (5 cm CUBE, SLANTED FRONT) • Adapted small puller - KURARAY FIBER FED FROM THE TOP – NOT IDEAL • Old multi-coated WLS fiber • Manual fiber feeder – Problem  fiber stretched • Poor fiber feeder Challenge: Fiber and scintillator are • NEW ALUMINUM DIE – MELT COMES OUT AT 90º • KURARAY FIBER FED STRAIGHT of the same material (polystyrene) 7 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  8. SCINTILLATION DETECTOR DEVELOPMENT I- WLS FIBER AND SCINTILLATOR CO- EXTRUSION (cont’d) FUTURE WORK • Proper fiber feeder • Different WLS fiber material – glass – High temperature glass – Need doped glass fiber with: • Green emission • Reasonable decay time – Started to look for glass fiber supplier 8 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  9. SCINTILLATION DETECTOR DEVELOPMENT II- THIN EXTRUDED SCINTILLATOR • Extruded scintillator ribbons • Potential use in calorimetry applications • Made: 100 mm x 2 mm extruded scintillator • Without reflective coating • Developed new die and sizing tooling, process • Serious mechanical challenges: – Threading extrusion line (start-up) – Sizing part – control shape and size • Samples used in the TEST BEAM by T-1015 FUTURE WORK • Explore sleek coating in sizing tool - MINOR 9 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  10. SCINTILLATION DETECTOR DEVELOPMENT III- POLYETHYLENE (PE) COATING • TYVEK is fused PE co-extruder • TYVEK is a good reflector extruder • Current TiO 2 /polystyrene coating yields a diffuse reflector (wet interface) • PE does not stick to polystyrene core • HDPE, LDPE, LLDPE – various grades • Usual extrusion setup co-extruder – Poor control of final strip size, shape cooling tank • Tandem extrusion setup cooling tank – New tooling required – New equipment layout 10 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  11. SCINTILLATION DETECTOR DEVELOPMENT III- POLYETHYLENE (PE) COATING (cont’d) • Difficult coating application cooling tank – Problem – tooling – short die-land – Machined a die-land extension • Preliminary results show scintillator with 2 nd die TiO 2 /PE coating has 20% more light than current scintillator with TiO 2 /PS coating FUTURE WORK • Best coating: PE grade and TiO 2 concentration • Extrusion parameters • Sizing tooling after 2 nd die 11 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  12. SCINTILLATION DETECTOR DEVELOPMENT IV- RADIATION-RESILIENT PLASTIC SCINTILLATORS – After 20 years! – New materials available: PS • Clear, used in encapsulation – CURRENT PLASTIC SCINTILLATORS USE • Polystyrene (PS) 1200 • Polyvinyltoluene (PVT) STANDARD BLUE SCINTILLATOR 1000 • Dopants Y UNITS Organic fluorescent compounds 800 RARY PULSE HEIGHT PLOT ARBITRAR USING 207 Bi SOURCE • PPO, PTP Y - ARBI 600 (1 MeV electrons) • POPOP, bis-MSB, BBOT INTENSITY 400 • Susceptible to radiation Losses in transmission even 200 at high dopant concentrations 0 0 100 200 300 400 500 CH CHAN ANNEL N L NUMBE BER 12 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  13. SCINTILLATION DETECTOR DEVELOPMENT IV- RADIATION- RESILIENT PLASTIC SCINTILLATORS (cont’d) – Tested polyurethanes R 4 ,R 5 : (CH 2 )n DISCOLORATION – Tested epoxies + DI-AMINES DISCOLORATION – Tested polysiloxanes PLAIN - UNDOPED AFTER IRRADIATION NO DISCOLORATION 13 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  14. SCINTILLATION DETECTOR DEVELOPMENT IV- RADIATION- RESILIENT PLASTIC SCINTILLATORS (cont’d) Polysiloxanes - One component – RTV – Acetic acid smell – Mostly aliphatic – Full clarity range: from translucent to very clear – Inexpensive, generally – No scintillation – Add scintillator (naphthalene, anthracene) – Add dopants: • Organic: PPO, POPOP – Solubility problems  opaque samples Work in progress to address these disadvantages before sending for irradiation 14 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  15. SCINTILLATION DETECTOR DEVELOPMENT IV- RADIATION- RESILIENT PLASTIC SCINTILLATORS (cont’d) Polysiloxanes – Two-part components – Pt or Rh catalyst 50% CeCl3, 10% POPOP, Layers 700 – Aliphatic Integration: 7338 600 • Very clear, no scintillation 500 PULSE HEIGHT PLOT 400 USING 207 Bi SOURCE • Add scintillator 300 (1 MeV electrons) 200 – Inorganic: CeF 3 , CeCl 3 100 Big solubility problems! 0 0 50 100 150 200 250 • Add secondary dopants: Channel Number – Organic: POPOP 10% CeCl3, 1% POPOP, Layers ~ solubility 500 Integration: 3865 400 PULSE HEIGHT PLOT 300 – Tested: JCR, Sylgard 184 USING 207 Bi SOURCE 200 (1 MeV electrons) 100 0 0 50 100 150 200 250 Channel Number 15 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  16. SCINTILLATION DETECTOR DEVELOPMENT IV- RADIATION- RESILIENT PLASTIC SCINTILLATORS (cont’d) Polysiloxanes – Two-part components – Pt or Rh catalyst 10% NAPH, 1% PPO, 0.05% POPOP, A 3000 – Aliphatic Integration: 43783 2500 • Very clear, no scintillation 2000 PULSE HEIGHT PLOT 1500 • Add scintillator USING 207 Bi SOURCE 1000 – Organic: naph, anth (1 MeV electrons) 500 Solubility problems 0 0 50 100 150 200 250 • Add dopants: Channel Number – Organic: PPO, POPOP 10% PPO, 0.05% POPOP ~ solubility 2500 Integration: 62483 2000 – Tested: JCR, Sylgard 184 1500 PULSE HEIGHT PLOT USING 207 Bi SOURCE 1000 (1 MeV electrons) 500 0 0 50 100 150 200 250 16 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014 Channel Number

  17. SCINTILLATION DETECTOR DEVELOPMENT IV- RADIATION- RESILIENT PLASTIC SCINTILLATORS (cont’d) Polysiloxanes – Two-part components – Pt or Rh catalyst – Aromatic • Still clear PS STANDARD SCINT (BLUE) - LS SCINT (RED) • Potential scintillator 1400 • Add dopants: 1200 PULSE HEIGHT PLOT Y UNITS USING 207 Bi SOURCE – Organic: PPO, POPOP 1000 (1 MeV electrons) RARY ARBITRAR ~ solubility 800 • Add solvent for dopants: Y - ARBI 600 INTENSITY – Oil – DC705 400 – HC – LAB 200 – Tested: LS, CSL 0 0 100 200 300 400 500 CH CHAN ANNEL N L NUMBE BER Work in progress! 17 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  18. SCINTILLATION DETECTOR DEVELOPMENT IV- RADIATION- RESILIENT PLASTIC SCINTILLATORS (cont’d) FUTURE WORK • Continue to look for clear materials • Test and characterize new materials • Check scintillation light yield • Perform radiation damage studies 18 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  19. SCINTILLATION DETECTOR DEVELOPMENT V- NEUTRON-SENSITIVE PLASTIC SCINTILLATOR • In support of the SuperCDMS experiment • Prepared polystyrene-based scintillator doped with a high concentration (10 – 20 %) of trimethylborate (TMB) – 10% TMB – full polymerization – 20% TMB – polymerization affected – soft materials • All samples turned cloudy – TMB is moisture sensitive • TMB is not a good dopant in plastic scintillators – TMB is currently used in the liquid scintillator by SCDMS FUTURE WORK • Continue to look for boron-containing additives - MINOR 19 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  20. SCINTILLATION DETECTOR DEVELOPMENT VI- WATER-BASED LIQUID SCINTILLATORS – Water does not scintillate – Get scintillator/dopants into solution – Use surfactants: • TRITON X – several grades – TRITON X-100 – TRITON X-102 – TRITON X-114 – Focused on TRITON X-102 – Tested different concentrations: • ie: samples 1, 2 and 3 – Checked light yield using 207 Bi source 20 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  21. SCINTILLATION DETECTOR DEVELOPMENT VI- WATER-BASED LIQUID SCINTILLATORS (cont’d) FUTURE WORK • Just started! Lots to do… • Improve light yield • Improve solubility • Optimize concentration • Test other surfactants • Test other dopants 21 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend