quantum criticality in ce co rh in 5 studied by low
play

quantum criticality in Ce(Co , Rh)In 5 studied by low-temperature - PowerPoint PPT Presentation

qk exp. setup Motiv ation results Concl. quantum criticality in Ce(Co , Rh)In 5 studied by low-temperature thermal expansion J. G. Donath 1 F. Steglich 1 E. D. Bauer 2 J. L. Sarrao 2 P. Gegenwart 3 1 Max-Planck-Institute for Chemical Physics


  1. qk exp. setup Motiv ation results Concl. quantum criticality in Ce(Co , Rh)In 5 studied by low-temperature thermal expansion J. G. Donath 1 F. Steglich 1 E. D. Bauer 2 J. L. Sarrao 2 P. Gegenwart 3 1 Max-Planck-Institute for Chemical Physics of Solids,  Dresden, Germany 2 Los Alamos National Laboratory, Los Alamos, New Mexico , USA 3 I. Physikalisches Institut, Universität Göttingen,  Göttingen, Germany Hvar – September th,  qc in Ce(Co , Rh)In5 guido donath

  2. qk exp. setup Motiv ation results Concl. Contents quantum criticality experimental setup motivation: materials results CeCoIn 5 − x Sn x CeRhIn 5 − x Sn x conclusion qc in Ce(Co , Rh)In5 guido donath

  3. qk exp. setup Motiv ation results Concl. specific heat and thermal expansion thermodynamic properties � ∂S temperature ◮ specific heat C p = T � ∂T p ◮ thermal expansion � ∂V NFL � � 1 � p = − 1 ∂S α = V ∂T V ∂p T ! α = α ( T ) , ( ∂S / ∂p ) T pointwise! MO LFL � � ◮ Grüneisen ratio Γ ∼ α / C = − 1 ∂E ∗ V E ∗ ∂p if single energy scale E ∗ dominates δ qc in Ce(Co , Rh)In5 guido donath

  4. qk exp. setup Motiv ation results Concl. specific heat and thermal expansion “nature” of qcp i. SDW type (“conventional QCP”) [Zhu et al. PRL  ,  ()] temperature AFM-QCP 3 D 2 D √ ( C / T ) cr ∼ − T − log T NFL √ ( α / T ) cr ∼ 1 / 1 / T T √ α cr ∼ T const MO LFL Γ cr ∼ 1 / T ii. local type (“unconventional QCP”) δ no T -dep. for α and C Γ cr ∼ 1 / T ǫ , ǫ < 1 qc in Ce(Co , Rh)In5 guido donath

  5. qk exp. setup Motiv ation results Concl. specific heat and thermal expansion “nature” of qcp i. SDW type (“conventional QCP”) [Zhu et al. PRL  ,  ()] temperature AFM-QCP 3 D 2 D √ ( C / T ) cr ∼ − T − log T NFL √ ( α / T ) cr ∼ 1 / 1 / T T √ α cr ∼ T const MO LFL Γ cr ∼ 1 / T ii. local type (“unconventional QCP”) δ no T -dep. for α and C Γ cr ∼ 1 / T ǫ , ǫ < 1 qc in Ce(Co , Rh)In5 guido donath

  6. qk exp. setup Motiv ation results Concl. quantum criticality experimental setup motivation: materials results CeCoIn 5 − x Sn x CeRhIn 5 − x Sn x conclusion qc in Ce(Co , Rh)In5 guido donath

  7. qk exp. setup Motiv ation results Concl. thermal expansion measuring cell ◮ capacitive method ◮ circular springs � parallel capacitor plates ◮ thermally decoupled with graphite elements � cell thermally stabilized ◮ relative resolution up to ∆ l / l = 10 − 11 ◮ dilution fridge: 0 . 02 � T � 6 K ◮ SC magnet: 0 � B � 20 T [Pott and Schefzyk, JPSI  ,  ()] qc in Ce(Co , Rh)In5 guido donath

  8. qk exp. setup Motiv ation results Concl. thermal expansion measuring cell 6cm [Pott and Schefzyk, JPSI  ,  ()] qc in Ce(Co , Rh)In5 guido donath

  9. qk exp. setup Motiv ation results Concl. quantum criticality experimental setup motivation: materials results CeCoIn 5 − x Sn x CeRhIn 5 − x Sn x conclusion qc in Ce(Co , Rh)In5 guido donath

  10. qk exp. setup Motiv ation results Concl. 115 systems ◮ tetragonal structure ◮ alternating layers of CeIn 3 and M In 2 � Fermi surface: 2 dimensional (cylindrical sheets along c ) ◮ large family of compounds � rich physics (SC, MO, NFL, . . . ) qc in Ce(Co , Rh)In5 guido donath

  11. qk exp. setup Motiv ation results Concl. 115 systems p, B = 0 T N 4 CeCoIn 5 T c ◮ HF SC with highest 3 T c = 2 . 3 K T (K) ◮ NFL at B c2 AFM 2 CeRhIn 5 SC 1 ◮ AFM at T c = 3 . 7 K SC ◮ SC for p > 1 . 6 GPa ? 0 ◮ NFL at p c 0 . 5 Co Co 0 . 5 Rh 0 . 5 Ir [Pagliuso et al. Physica B - ,  ()] qc in Ce(Co , Rh)In5 guido donath

  12. qk exp. setup Motiv ation results Concl. CeCoIn5 CeRhIn5 quantum criticality experimental setup motivation: materials results CeCoIn 5 − x Sn x CeRhIn 5 − x Sn x conclusion qc in Ce(Co , Rh)In5 guido donath

  13. qk exp. setup Motiv ation results Concl. CeCoIn5 CeRhIn5 CeCoIn 5 : phase diagram p, x = 0 ◮ complex SC phase for 0 < T � 2 . 3 K and 0 � B c2 � 5 T ◮ around 5 T : NFL - behavior in C, ρ , α , ... � reason for QCP still unclear � “hidden order (AFM)”, (SC QCP), ... [Paglione et al. PRL  ,  ()] qc in Ce(Co , Rh)In5 guido donath

  14. qk exp. setup Motiv ation results Concl. CeCoIn5 CeRhIn5 Sn doping: CeCoIn 5 − x Sn x why Sn -doping? ◮ separate B QCP from B c 2 � study origin of NFL qc in Ce(Co , Rh)In5 guido donath

  15. qk exp. setup Motiv ation results Concl. CeCoIn5 CeRhIn5 Sn doping: CeCoIn 5 − x Sn x p, B = 0 ◮ Sn (electron)-doping suppresses SC ◮ for x = 0 . 18 : T c = 0 , but no AFM order [Daniel et al. PRL  ,  ()] qc in Ce(Co , Rh)In5 guido donath

  16. qk exp. setup Motiv ation results Concl. CeCoIn5 CeRhIn5 CeCoIn 5 − x Sn x qc behavior: α and C p, x = 0 − 1/2 ~ T 20 CeCoIn 5 5 T // c − 1 ~ T 15 2 mol) − 2 ) − 6 K 1 ∆ C / T (J/K α / T (10 10 T * ~( const − T 1/2 ) 5 ~ log T a b 0 0 0.1 1 0.1 1 7 T (K) C / T : α / T : [A. Bianchi et al. PRL  ,  ()] [JGD et al. PRL  ,  ()] ◮ 2 D or 3 D ◮ 2 D: T > T ∗ , 3 D: T < T ∗ qc in Ce(Co , Rh)In5 guido donath

  17. qk exp. setup Motiv ation results Concl. CeCoIn5 CeRhIn5 CeCoIn 5 − x Sn x qc behavior: α and C p = 0 , B = B c2 ◮ diverging C for all concentrations at the upper critical field B c2 ◮ ( α / T ) cr ∼ 1 / T for T > T ∗ � 2 D √ ◮ α cr ∼ T for T < T ∗ � 3 D ◮ crossover temperature T ∗ increases with increasing x [Bauer et al. PRL ,  ()] qc in Ce(Co , Rh)In5 guido donath

  18. qk exp. setup Motiv ation results Concl. CeCoIn5 CeRhIn5 CeCoIn 5 − x Sn x qc behavior: α and C p = 0 , B = B c2 60 CeCoIn 5-x Sn x x 55 0.00 50 0.03 45 0.06 ◮ diverging C for all concentrations 0.09 40 0.12 at the upper critical field B c2 -2 ) -6 K 35 0.18 ◮ ( α / T ) cr ∼ 1 / T for T > T ∗ � 2 D �� / T (10 30 √ ◮ α cr ∼ T for T < T ∗ � 3 D 25 ◮ crossover temperature T ∗ 20 increases with increasing x 15 10 5 0 0.1 1 T (K) [JGD et al. PRL  ,  ()] qc in Ce(Co , Rh)In5 guido donath

  19. qk exp. setup Motiv ation results Concl. CeCoIn5 CeRhIn5 CeCoIn 5 − x Sn x qc behavior: α and C p = 0 , B = B c2 6 CeCoIn 5-x Sn x ◮ diverging C for all concentrations 5 at the upper critical field B c2 4 ◮ ( α / T ) cr ∼ 1 / T for T > T ∗ � 2 D -1 ) √ T* -6 K T for T < T ∗ � 3 D ◮ α cr ∼ 3 � (10 x 0.00 ◮ crossover temperature T ∗ 2 0.18 T* increases with increasing x 1 0 0 1 2 3 4 5 6 T (K) [JGD et al. PRL  ,  ()] qc in Ce(Co , Rh)In5 guido donath

  20. qk exp. setup Motiv ation results Concl. CeCoIn5 CeRhIn5 CeCoIn 5 − x Sn x qc behavior: α and C p = 0 , B = B c2 ◮ disorder effect? ◮ intrinsic? � layered lattice structure � coupled planes � α and κ most sensitive ◮ Γ ∼ T − 0 . 65 [Bauer et al. PRB  ,  ()] qc in Ce(Co , Rh)In5 guido donath

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend