quantum corrections in ads dcft
play

Quantum corrections in AdS/dCFT Matthias Wilhelm, Niels Bohr - PowerPoint PPT Presentation

Quantum corrections in AdS/dCFT Matthias Wilhelm, Niels Bohr Institute . Nordic String Meeting 2017, Hannover February 10th, 2017 [1606.01886], [1611.04603] with I. Buhl-Mortensen, M. de Leeuw, A. C. Ipsen, C. Kristjansen Matthias Wilhelm


  1. Quantum corrections in AdS/dCFT Matthias Wilhelm, Niels Bohr Institute . Nordic String Meeting 2017, Hannover February 10th, 2017 [1606.01886], [1611.04603] with I. Buhl-Mortensen, M. de Leeuw, A. C. Ipsen, C. Kristjansen Matthias Wilhelm Quantum corrections in AdS/dCFT

  2. Table of contents Motivation 1 Defect theory & framework for quantum corrections 2 One-point functions 3 Conclusion and outlook 4 Matthias Wilhelm Quantum corrections in AdS/dCFT

  3. Motivation Conformal field theories: Phenomenologically relevant Highly constrain the form of correlation functions Success of understanding standard AdS/CFT setup and N = 4 SYM theory, in particular due to integrability Matthias Wilhelm Quantum corrections in AdS/dCFT

  4. Motivation Conformal field theories: Phenomenologically relevant Highly constrain the form of correlation functions Success of understanding standard AdS/CFT setup and N = 4 SYM theory, in particular due to integrability Defect CFTs: Equally relevant New features: Non-vanishing one-point functions Non-vanishing two-point functions between operators of different scaling dimensions New aspects of gauge gravity correspondence: AdS/dCFT Matthias Wilhelm Quantum corrections in AdS/dCFT

  5. Table of contents Motivation 1 Defect theory & framework for quantum corrections 2 One-point functions 3 Conclusion and outlook 4 Matthias Wilhelm Quantum corrections in AdS/dCFT

  6. String-theory construction D5-D3 probe brane set-up [Karch, Randall (2000)] N − k D3 N D3 D5 D3 brane ∼ R 1 , 3 D5 brane ∼ AdS 4 × S 2 with flux k through S 2 x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 D3 × × × × D5 × × × × × × � �� � defect Matthias Wilhelm Quantum corrections in AdS/dCFT

  7. Gauge theory x 0 x 3 < 0: SU ( N − k ) x 3 > 0: (broken) SU ( N ) x 3 x 1 , 2 SU ( N ) broken by x 3 -dependent vacuum expectation values for scalars 3D fundamental hypermultiplet on defect S = S N =4 + S D =3 [DeWolfe, Freedman, Ooguri (2001)] , [Erdmenger, Guralnik, Kirsch (2002)] Matthias Wilhelm Quantum corrections in AdS/dCFT

  8. Classical solution Classical fields ψ cl = ¯ ψ cl = 0 φ cl φ cl A cl 1 , 2 , 3 � = 0 = 0 = 0 4 , 5 , 6 µ Equations of motion [Constable, Myers, Tafjord (1999)] ∂ 2 φ cl i = [ φ cl j , [ φ cl j , φ cl i ]] ∂ x 2 3 x 3 : distance to defect Solution via k -dimensional irreducible representation of the SU (2) Lie algebra: � ( t i ) k × k � i = − 1 0 k × ( N − k ) φ cl 0 ( N − k ) × k 0 ( N − k ) × ( N − k ) x 3 t 1 , t 2 , t 3 with [ t i , t j ] = i ǫ ijk t k Also satisfies Nahm equation [Nahm (1979)] Matthias Wilhelm Quantum corrections in AdS/dCFT

  9. Action Action of N = 4 SYM theory � � 2 − 1 4 F µν F µν − 1 2 D µ φ i D µ φ i + i ψ Γ µ D µ ψ d 4 x tr ¯ S N =4 = g 2 2 YM � + 1 ψ Γ i [ φ i , ψ ] + 1 ¯ 4[ φ i , φ j ][ φ i , φ j ] 2 Expand around classical solution φ i = φ cl i + ˜ φ i i = 1 , 2 , 3 2 tr( G 2 ), G = ∂ µ A µ + i [˜ Gauge fix with S gf = − 1 φ i , φ cl i ] S N =4 + S gf = S kin + S m + S cubic + S quartic [Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, MW (2016)] Matthias Wilhelm Quantum corrections in AdS/dCFT

  10. Mass terms Mass term � � 2 + 1 φ j ] + 1 i , ˜ i , ˜ j ][˜ φ i , ˜ d 4 x tr 2[ φ cl φ j ][ φ cl 2[ φ cl i , φ cl S m = φ j ] g 2 YM + 1 j ] + 1 i , ˜ φ j ][˜ i , ˜ j , ˜ 2[ φ cl φ i , φ cl 2[ φ cl φ i ][ φ cl φ j ] + 1 i ] + 2 i [ A µ , ˜ 2[ A µ , φ cl i ][ A µ , φ cl φ i ] ∂ µ φ cl i � + 1 ¯ ψ Γ i [ φ cl c [ φ cl i , [ φ cl i , ψ ] − ¯ i , c ]] 2 Properties: Non-diagonal in colour Mixing between the ˜ φ 1 , ˜ φ 2 , ˜ φ 3 and A 3 as well as between the fermion flavours Mass proportional to 1 / x 3 via φ cl i [Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, MW (2016)] Matthias Wilhelm Quantum corrections in AdS/dCFT

  11. How to solve this? Matthias Wilhelm Quantum corrections in AdS/dCFT

  12. Diagonalising the mass matrix � � A 0 , k × k A 0 , k × ( N − k ) Easy example: A 0 = A 0 , ( N − k ) × k A 0 , ( N − k ) × ( N − k ) Mass term: − 1 1 � � � � A 0 [ t i , [ t i , A 0 ]] A 0 , k × k [ t i , [ t i , A 0 tr = − tr k × k ]] 2 x 2 2 x 2 3 3 + 1 � � A 0 , k × ( N − k ) A 0 tr ( N − k ) × k t i t i x 2 ���� 3 k 2 − 1 4 L 2 = L i L i with L i = ad t i is the Laplacian on the fuzzy sphere: ⇒ Can be diagonalised by fuzzy spherical harmonics ˆ Y m ℓ Mass terms of { ˜ φ 1 , ˜ φ 2 , ˜ φ 3 , A 3 } and the fermions also contain σ i L i → Similar to spin-orbital interaction of the hydrogen atom! [Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, MW (2016)] Matthias Wilhelm Quantum corrections in AdS/dCFT

  13. Spectrum of the mass matrix � m 2 + 1 Eigenvalues (for x 3 = 1) and multiplicities in terms of ν = 4 ν (˜ ν (˜ Multiplicity φ 4 , 5 , 6 , A 0 , 1 , 2 , c ) m ( ψ 1 , 2 , 3 , 4 ) φ 1 , 2 , 3 , A 3 ) ℓ + 1 ℓ + 3 ℓ = 1 , . . . , k − 1 ℓ + 1 2 2 ℓ + 1 ℓ − 1 ℓ + 1 ℓ 2 2 k k +1 k +2 ( k − 1)( N − k ) 2 2 2 k − 1 k − 2 k ( k + 1)( N − k ) 2 2 2 1 1 ( N − k )( N − k ) 0 2 2 [Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, MW (2016)] Matthias Wilhelm Quantum corrections in AdS/dCFT

  14. Propagators Scalar propagator with x 3 -dependent mass term � � − ∂ µ ∂ µ + m 2 K ( x , y ) = g 2 YM 2 δ ( x − y ) ( x 3 ) 2 Standard scalar propagator K AdS ( x , y ) in AdS 4 with mass ˜ m m 2 ) K AdS ( x , y ) = δ ( x − y ) ( −∇ µ ∇ µ + ˜ √ g 1 with the metric of AdS 4 given as g µν = ( x 3 ) 2 η µν Scalar propagators K ( x , y ) = g 2 K AdS ( x , y ) YM 2 x 3 y 3 m 2 = m 2 − 2 upon identifying ˜ [Nagasaki, Tanida, Yamaguchi (2011)] , [Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, MW (2016)] Matthias Wilhelm Quantum corrections in AdS/dCFT

  15. Table of contents Motivation 1 Defect theory & framework for quantum corrections 2 One-point functions 3 Conclusion and outlook 4 Matthias Wilhelm Quantum corrections in AdS/dCFT

  16. One-point functions in defect CFTs New feature of dCFTs: operators O can have nonvanishing one-point functions [Cardy (1984)] �O� = C x ∆ 3 ∆: scaling dimension of O , x 3 : distance to defect, C : constant Studied in this dCFT at tree level for BPS operators [Nagasaki, Tanida, Yamaguchi (2011)] and operators in the SU (2) sector [de Leeuw, Kristjansen, Zarembo (2015)] , [Buhl-Mortensen, de Leeuw, Kristjansen, Zarembo (2015)] , where integrability was found. Study loop corrections → Start with simplest operator: O ( x ) = tr( Z L )( x ) , Z ( x ) = φ 3 ( x ) + i φ 6 ( x ) BPS → corrections to C but not to ∆ Matthias Wilhelm Quantum corrections in AdS/dCFT

  17. One-point functions at tree level Tree-level one-point function of O = tr( Z L ) [Nagasaki, Tanida, Yamaguchi (2011)] [de Leeuw, Kristjansen, Zarembo (2015)] 3 ) L ) = ( − 1) L = tr(( Z cl ) L ) = tr(( φ cl tr( t L �O� tree-level = t 3 ) x L 3 k � k − 2 i + 1 � L = ( − 1) L � x L 2 3 i =1 � 0 , L odd = � 1 − k � 2 − , L even 3 ( L +1) B L +1 x L 2 B L +1 ( u ): Bernoulli polynomial Matthias Wilhelm Quantum corrections in AdS/dCFT

  18. One-loop corrections to one-point functions One-loop correction: two diagrams 1. Two quantum fields in O : 2. One quantum field in O , tadpole diagram one cubic vertex: lollipop diagram �O� 1-loop , tad = �O� 1-loop , lol = t t [Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, MW (2016)] Matthias Wilhelm Quantum corrections in AdS/dCFT

  19. Tadpole diagram Tadpole diagram � tr( Z cl . . . ˜ Z . . . ˜ Z . . . Z cl ) �O� 1-loop , tad = = t Planar limit → quantum fields need to be adjacent Regulate scalar loop K ( x , x ) in dimensional regularisation in the d = 3 − 2 ε dimensions parallel to the defect Result: � 1 − k � λ 2 L �O� 1-loop , tad = − 3 ( L − 1) B L − 1 16 π 2 x L 2 [Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, MW (2016)] Matthias Wilhelm Quantum corrections in AdS/dCFT

  20. Lollipop diagram Lollipop diagram � tr( Z cl . . . � ˜ Z � 1-loop . . . Z cl ) �O� 1-loop , lol = = t where � � � ˜ Z � 1-loop ( x ) = ˜ d 4 y Z ( x ) V 3 (Φ 1 , Φ 2 , Φ 3 )( y ) Φ 1 , Φ 2 , Φ 3 Result: � ˜ Z � 1-loop = 0 ⇒ �O� 1-loop , lol = 0 Crucially depends on the use of a supersymmetry-preserving regularisation scheme ` a la dimensional reduction! [Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, MW (2016)] Matthias Wilhelm Quantum corrections in AdS/dCFT

  21. String-theory calculation Double-scaling limit suggested in [Nagasaki, Tanida, Yamaguchi (2011)] to compare gauge-theory and string-theory results and thus test AdS/dCFT: λ N → ∞ k → ∞ k ≪ N k 2 ≪ 1 Dual description of one-point function of O [Nagasaki, Yamaguchi (2012)] : y x 3 x 0 , 1 , 2 point-like string stretching from boundary of AdS 5 to D5 brane, calculable in supergravity approximation λ Suggests perturbative expansion in k 2 Matthias Wilhelm Quantum corrections in AdS/dCFT

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend