quantum and medium effects in resonant leptogenesis
play

Quantum and Medium Effects in Resonant Leptogenesis Andreas - PowerPoint PPT Presentation

Quantum and Medium Effects in Resonant Leptogenesis Andreas Hohenegger with Tibor Frossard Mathias Garny Alexander Kartavtsev (arXiv: 0909.1559, 0911.4122, 1002.0331, 1112.642, in preparation ) cole Polytechnique Fdrale de Lausanne


  1. Quantum and Medium Effects in Resonant Leptogenesis Andreas Hohenegger with Tibor Frossard Mathias Garny Alexander Kartavtsev (arXiv: 0909.1559, 0911.4122, 1002.0331, 1112.642, in preparation ) École Polytechnique Fédérale de Lausanne PASCOS Mérida, 2012-6-7 Andreas Hohenegger, Mérida 2012

  2. Leptogenesis s L s L t L CP CP CP CP CP CP CP c L b L d L b L ν τ d L ν µ u L ν e L = L SM + 1 2 ¯ � i / � N i ∂ − M i N i − h α i ¯ ℓ α ˜ φ P R N i − h † i α ¯ N i ˜ φ † P L ℓ α Andreas Hohenegger, Mérida 2012

  3. Leptogenesis kinetic equations needed, usually generalized Boltzmann equations (BEs) C ℓ + . ↔ i + . k µ D µ f ℓ ( X , k ) = � [ . f ℓ . ]( X , k ) k interactions of ℓ 2 ↔ 1 collision term � � C ℓ φ ↔ N i ( k ) = 1 � p d Π N i d Π φ q ( 2 π ) 4 δ ( k + p − q ) − 2 where 2 � � p ) f N i ( 1 ± f ℓ k )( 1 ± f φ � � = � � q � � 2 � � k f φ p ( 1 ± f N i f ℓ � � = q ) � � � � 2 ↔ 1 collision term antiparticles � � C ℓ φ ↔ N i ( k ) = 1 � d Π φ p d Π N i q ( 2 π ) 4 δ ( k + p − q ) − 2 Andreas Hohenegger, Mérida 2012

  4. Leptogenesis one-loop vertex and self-energy contribution ℓ = + + N j N i φ N i N i N j parametrize matrix elements by CP -violating parameter 2 2 = 1 = 1 � � � � 2 ( 1 + ǫ i ) |M| 2 2 ( 1 − ǫ i ) |M| 2 � � � � N i , � � � � N i � � � � |M| 2 N i → ℓφ − |M| 2 N i → ¯ ℓ ¯ φ ǫ i = |M| 2 N i → ℓφ + |M| 2 N i → ¯ ℓ ¯ φ ( h † h ) 2 Im � � � � � � � ∗ ∗ ij ǫ vac = 2 Im + 2Im × × i ( h † h ) ii M i self-energy contrib. completed by finite width (Paschos et. al., Pilaftsis et. al., Plümacher et. al., Covi et. al. . . . ) Im ( h † h ) 2 M 2 j − M 2 � � R ij i ǫ vac with R ≡ = − R 2 + A 2 , i ( h † h ) ii ( h † h ) jj M i Γ j Andreas Hohenegger, Mérida 2012

  5. Resonant Leptogenesis self-energy contribution is resonantly enhanced R/ ( R 2 + A 2 ) 1 A = M 1 /M 2 , A = Γ 1 / Γ 2 − M 2 /M 1 A = Γ 1 / Γ 2 + M 2 /M 1 0 . 1 0 . 01 0 . 01 0 . 1 1 10 10 2 R ∼ 1 if Im � ( h † h ) 2 � resonance conditions: ǫ vac ( h † h ) ii ( h † h ) jj ∼ 1 and | R | ≃ A ij i require | M j − M i | ∼ Γ i , j Andreas Hohenegger, Mérida 2012

  6. Nonequilibrium Quantum Field Theory repeat nonequilibrium quantum field analysis of resonant “leptogenesis” within toy-model 0911.4122 for SM+3 ν R � � � � N i → ℓ φ , N i → ℓ φ ψ i → b b , ψ i → b b = ⇒ see also: Buchmüller, Anisimov, Drewes, Mendizabal and Garbrecht, Herannen, Schwaller, et. al. divergence of lepton current (flavour independent) L ( x ) = dn L ∂ µ j µ dt + 3 Hn L j µ ¯ � αα ℓ a α ( x ) γ µ ℓ a Tr [ γ µ S ℓ L ( x ) = �� α ( x ) � = − aa ( x , x )] α, a α, a Kadanoff-Baym equations � x 0 � y 0 d 4 z Σ ℓ d 4 z Σ ℓ αβ αγ γβ αγ γβ i / ∂ x S ℓ F ( x , y ) = ρ ( x , z ) S ℓ F ( z , y ) − F ( x , z ) S ℓ ρ ( z , y ) 0 0 � x 0 y 0 d 4 z Σ ℓ αβ αγ γβ i / ∂ x S ℓ ρ ( x , y ) = ρ ( x , z ) S ℓ ρ ( z , y ) Andreas Hohenegger, Mérida 2012

  7. Nonequilibrium Quantum Field Theory 1-loop self-energy ∆ − → S N S gradient expansion, Wigner transformation . . . ∞ dk 0 d 3 k � � ∂ µ j µ L ( t ) = 2 ( 2 π ) 3 Tr αβ βα αβ βα �� < ( t , / > ( t , / > ( t , / < ( t , / � Σ ℓ k ) S ℓ k ) − Σ ℓ k ) S ℓ k ) 2 π 0 βα k ) ¯ αβ βα k ) ¯ αβ � ¯ k ) − ¯ < ( t , / > ( t , / > ( t , / < ( t , / �� − Σ ℓ S ℓ Σ ℓ S ℓ k ) compare with conventional Boltzmann equations d 3 k � � � ∂ µ j µ C ℓ φ ↔ N i ( k ) − C ℓ φ ↔ N i ( k ) L ( x ) = ( 2 π ) 3 E ℓ k Andreas Hohenegger, Mérida 2012

  8. Nonequilibrium Quantum Field Theory Kadanoff-Baym ansatz and quasi-particle approximation for leptons and Higgs (lepton flavour-diagonal) k ) = δ αβ P L / kP R ( 2 π ) sign ( k 0 ) δ ( k 2 ) αβ ρ ( t , / S ℓ ∆ φ ρ ( t , p ) = ( 2 π ) sign ( p 0 ) δ ( p 2 ) quasi-particle approximation insufficient for Majorana neutrinos overlap due to finite width neglected diagonal approximation neglects cross-correlations ij ρ ( t , q ) = S N δ ij ( / q + M i ) ( 2 π ) sign ( q 0 ) δ ( q 2 − M 2 i ) extended QP-approximation required Andreas Hohenegger, Mérida 2012

  9. Nonequilibrium Quantum Field Theory equilibrium solution for ˆ S with off-diagonal components elegant analytic solution with off-shell dynamics possible (neglecting back-reaction and expansion) 1112.6428 rewrite full ˆ S in terms of diagonal ˆ S and off-diagonal ˆ Σ ′ S − 1 ( x , y ) = ˆ ˆ S − 1 ( x , y ) − ˆ Σ ′ ( x , y ) solve for ˆ S � ˆ S F ( ρ ) = ˆ ˆ S R ˆ � ˆ S F ( ρ ) − ˆ Σ ′ F ( ρ ) ˆ Θ R S A Θ A � − 1 and ˆ � − 1 I + ˆ I + ˆ where ˆ A ˆ S R ˆ � Σ ′ � Σ ′ Θ A = S A Θ R = R insert ˆ S in self-energy analyse the pole structure of ˆ S (extended) quasi-particle approximation for diagonal propagator Andreas Hohenegger, Mérida 2012

  10. Nonequilibrium Quantum Field Theory consider 2RHN, spectral functions for R = 100, ( M 1 , M 2 ≪ M 3 ) T = 0 . 1 M 1 , M 1 M 1 = 1 · 10 3 GeV S 11 ρ S 22 � ( h † h ) 11 ( h † h ) 12 � ρ h † h = S 11 ρ ( h † h ) 21 ( h † h ) 22 S 22 ρ S 12 1 . 7 0 . 14 + 0 . 2 i ρ � � = 10 − 12 0 . 14 − 0 . 2 i 0 . 33 M 2 > M 1 , ( h † h ) 11 > ( h † h ) 22 q 0 q 0 I J Andreas Hohenegger, Mérida 2012

  11. Nonequilibrium Quantum Field Theory spectral functions for R = 100, T = 0 . 1 M 1 , M 1 S 11 ρ S 22 ρ S 11 ρ S 22 ρ S 12 ρ S 11 ρ S 22 ρ S 11 ρ S 22 ρ S 12 ρ q 0 q 0 I J q 0 q 0 I J Andreas Hohenegger, Mérida 2012

  12. Nonequilibrium Quantum Field Theory spectral functions for R = 10, T = 0 . 1 M 1 , M 1 S 11 ρ S 22 ρ S 11 ρ S 22 ρ S 12 ρ q 0 q 0 I J Andreas Hohenegger, Mérida 2012

  13. Nonequilibrium Quantum Field Theory spectral functions for R = 10, T = 0 . 1 M 1 , M 1 S 11 ρ S 22 ρ S 11 ρ S 22 ρ S 12 ρ S 11 ρ S 22 ρ S 11 ρ S 22 ρ S 12 ρ q 0 q 0 I J q 0 q 0 I J N 1 , N 2 undergo level-crossing Andreas Hohenegger, Mérida 2012

  14. Nonequilibrium Quantum Field Theory quantum-corrected rate equation ∂ µ j µ L = � � � � p d Π N i d Π ℓ k d Π φ q ( 2 π ) 4 δ ( k + p − q ) |M| 2 � − N i → ℓφ i � � � − |M| 2 − N i → ¯ ℓ ¯ φ corrected CP -violating parameter in R ≫ 1 limit ( h † h ) 2 ( M 2 i − M 2 ǫ i = Im � � j ) M i Γ j k · L ρ ij � 2 + � 2 ( h † h ) ii ( h † h ) jj k · q M 2 � � i − M j Γ j / M j q · L ρ medium effects � d Π ℓ k d Π φ p ( 2 π ) 4 δ ( q − p − k ) / q ) = 16 π k ( 1 + f φ − f ℓ ) L ρ ( t , / retrieve conventional amplitudes in R → ∞ , T → 0 limit Andreas Hohenegger, Mérida 2012

  15. Nonequilibrium Quantum Field Theory L h ( ρ ) capture medium effects (two components for each sufficient) m ℓ = m φ = 0, T = M 1 ( − ) L ρ ( h ) q 0 4 L 0 ρ 3 . 5 L 3 ρ L 0 h 3 L 3 h 2 . 5 2 1 . 5 1 0 . 5 0 0 5 10 15 20 q M 1 Andreas Hohenegger, Mérida 2012

  16. Rate Equations rate equations � γ D N i � dY N i ( Y N i − Y eq = − κ i z N i ) n eq 2 Γ vac dz i N i � � ǫ i γ D � � γ W N i � dY L � � N i ( Y N i − Y eq N i ) − ( 1 + c φℓ ) c ℓ dz = κ i z Y L n eq 2 n eq 2 Γ vac 2 Γ vac i N i i ℓ i medium corrected reaction densities (compare Garbrecht et. al., Wong et. al., Hannestad et. al., Pastor et. al.) � d Π N i q d Π ℓ p ( 2 π ) 4 δ ( q − k − k ) φ � γ D N i � ≡ k d Π × |M| 2 N i ( 1 + f φ − f ℓ ) f N i � d Π N i q d Π ℓ p ( 2 π ) 4 δ ( q − k − k ) φ ǫ i γ D � � ≡ k d Π N i × ǫ i |M| 2 N i ( 1 + f φ − f ℓ ) f N i � p ( 2 π ) 4 δ ( q − p − k ) d Π N i q d Π ℓ φ � γ W N i � ≡ k d Π × |M| 2 N i ( 1 + f φ − f ℓ )( 1 − f N i ) f N i Andreas Hohenegger, Mérida 2012

  17. Preliminary Results averaged CP -violating parameter � ǫ 1 � − 10 − 6 R = 1 � ǫ vac R = 10 1 − 10 − 5 R = 100 R = 1 � R = 10 � ǫ 1 � − 10 − 4 R = 100 | R | < 10 − 10 − 3 − 0 . 01 − 0 . 1 − 1 0 . 1 1 10 z Andreas Hohenegger, Mérida 2012

  18. Thermal Masses and Modified Dispersion Relations L h ( ρ ) depend on the kinematics in the decay thermal masses of leptons and Higgs m ℓ ∼ 0 . 2 T , m φ ∼ 0 . 4 T , φ → ℓ + N i for m φ > m ℓ + M i = + + ǫ i for Higgs ( 1 + f φ − f ℓ ) − → ( f φ + f ℓ ) leptons have modified dispersion relations (Weldon; Giudice et.al.; Plümacher, Kießig) d 3 k dk 0 d 3 k dk 0 � � ( 2 π ) 3 δ ( k 2 − m 2 d Π ℓ q = ℓ ) − → ( 2 π ) 3 δ ( δ ℓ ( k )) collinear enhancement can enable Majorana decay with enhanced rate at high T (Bödecker et. al., Laine et. al.) Andreas Hohenegger, Mérida 2012

  19. Conclusions Nonequilibrium quantum field theory can put Leptogenesis on solid ground improved rate equations for quasi-degenerate case quantitative corrections can be significant need quantum analysis with off-shell dynamics in degenerate case need to include further medium effects Andreas Hohenegger, Mérida 2012

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend