dissipation in resonant systems implications of observed
play

Dissipation in resonant systems: Implications of observed orbital - PowerPoint PPT Presentation

Dissipation in resonant systems: Implications of observed orbital configurations J.-B. Delisle, J. Laskar, A. C. M. Correia Geneva Observatory - Switzerland October 8, 2015 Resonant/near resonant systems What is a resonance between 2


  1. Dissipation in resonant systems: Implications of observed orbital configurations J.-B. Delisle, J. Laskar, A. C. M. Correia Geneva Observatory - Switzerland October 8, 2015

  2. Resonant/near resonant systems • What is a resonance between 2 planets? – P 2 / P 1 = p / q ( p , q integers) – Example: 2/1 2.1 • Resonant or near resonant system? 2.05 P 2 / P 1 Resonance width 2 depends on m i , e i 1.95 1.9 -100 0 100 200 300 400 2 λ 2 − λ 1 Jean-Baptiste DELISLE (Geneva) Dissipation in resonance October 8, 2015 2 / 14

  3. Kepler near-resonant planets • Distribution of period ratio in Kepler data Fabrycky et al. (2014) Lissauer et al. (2011), Fabrycky et al. (2014) • Peaks at resonances −→ convergent migration ( P 2 / P 1 ց ) • Peaks slightly shifted to the right −→ tidal dissipation? (Systems near but outside of resonances) Papaloizou & Terquem (2010), Lithwick & Wu (2012), Delisle et al (2012), Batygin & Morbidelli (2013), Lee et al (2013), Delisle et al (2014), Delisle & Laskar (2014) Jean-Baptiste DELISLE (Geneva) Dissipation in resonance October 8, 2015 3 / 14

  4. Formation scenario 2 . 5 Convergent migration 2 . 4 (in protoplanetary disk) 2 . 3 Evolution under P 2 P 1 tides (slow) 2 . 2 2 . 1 2 . 0 t Capture in resonance End of migration Jean-Baptiste DELISLE (Geneva) Dissipation in resonance October 8, 2015 4 / 14

  5. Kepler near-resonant planets • Other possible explanations for the shift: – protoplanetary disk - planets interactions Rein (2012), Baruteau & Papaloizou (2013) – planetesimals - planets interactions Chatterjee & Ford (2015) – in-situ formation of planets Petrovitch, Malhotra, Tremaine (2013), Xie (2014) Jean-Baptiste DELISLE (Geneva) Dissipation in resonance October 8, 2015 5 / 14

  6. Why tidal dissipation? • Distribution of period ratio close to resonances (2:1 + 3:2) 1 P 1 < 5 d 5 d ≤ P 1 < 15 d 0 . 8 P 1 ≥ 15 d 0 . 6 CDF RES 0 . 4 0 . 2 0 − 1 − 0 . 5 0 0 . 5 1 1 . 5 2 2 . 5 3 P 2 / P 1 − ( p + 1) / p · 10 − 2 Delisle, Laskar (2014) Jean-Baptiste DELISLE (Geneva) Dissipation in resonance October 8, 2015 6 / 14

  7. Why tidal dissipation? • Distribution of period ratio close to resonances (2:1 + 3:2) 1 P 1 < 5 d 5 d ≤ P 1 < 15 d 0 . 8 P 1 ≥ 15 d 0 . 6 CDF RES Evidence for tidal 0 . 4 dissipation Shift for close-in systems 0 . 2 0 − 1 − 0 . 5 0 0 . 5 1 1 . 5 2 2 . 5 3 P 2 / P 1 − ( p + 1) / p · 10 − 2 • KS-tests – Close-in vs Farthest: 0.08% – Close-in vs Intermediate: 3.5% – Intermediate vs Farthest: 10% Delisle, Laskar (2014) Jean-Baptiste DELISLE (Geneva) Dissipation in resonance October 8, 2015 6 / 14

  8. Analytical model of resonances • First order resonances (2/1, 3/2, etc.) Integrable approximation is straightforward Sessin & Ferraz-Mello (1984), Henrard et al. (1986), Wisdom (1986), Batygin & Morbidelli (2013) • Higher order resonances (3/1, 5/2, etc.) 2 degrees of freedom (not integrable) – New simplifying assumption e 1 / e 2 ≈ ( e 1 / e 2 ) forced (ecc. ratio at resonance center) 2.1 Integrable pendulum-like approx. 2.05 P 2 / P 1 H = − ( I − δ ) 2 + 2 R cos( q θ ) 2 1.95 Delisle, Laskar, Correia, Bou´ e (2012) 1.9 -100 0 100 200 300 400 Delisle, Laskar, Correia (2014) 2 λ 2 − λ 1 Jean-Baptiste DELISLE (Geneva) Dissipation in resonance October 8, 2015 7 / 14

  9. Dissipative evolution in resonance • Dissipation affects the resonant motion in 2 ways 2.1 2.05 Width change P 2 / P 1 2 Spiraling of trajectory 1.95 1.9 -100 0 100 200 300 400 2 λ 2 − λ 1 • Relative amplitude: A = Amplitude Width – if A ց Locked in resonance, P 2 / P 1 ≈ p / q – if A ր Escape from resonance, P 2 / P 1 no more locked Jean-Baptiste DELISLE (Geneva) Dissipation in resonance October 8, 2015 8 / 14

  10. Migration in protoplanetary disk � e 1 � 2 • A ր (unstable res.) ⇐⇒ T e , 1 T e , 2 < e 2 forced ecc. damping timescales (by disk-planet interactions) Escape with P 2 / P 1 ց (convergent migration) 2 . 5 A ց A ր 2 . 4 2 . 4 2 . 2 2 . 3 P 2 P 1 2 . 2 P 2 P 1 2 . 0 2 . 1 1 . 8 2 . 0 1 . 6 1 . 9 t t Delisle, Correia, Laskar (2015) Jean-Baptiste DELISLE (Geneva) Dissipation in resonance October 8, 2015 9 / 14

  11. Migration in protoplanetary disk � e 1 � 2 • A ր (unstable res.) ⇐⇒ T e , 1 T e , 2 < e 2 forced ecc. damping timescales (by disk-planet interactions) Escape with P 2 / P 1 ց (convergent migration) • Observed resonant systems constraints on disk properties (ex: aspect ratio, surface density profile...) Delisle, Correia, Laskar (2015) Jean-Baptiste DELISLE (Geneva) Dissipation in resonance October 8, 2015 9 / 14

  12. Constraints on disk properties Varying disk properties τ = + ∞ , K = 70 τ = 10 , K = 34 τ = 8 , K = 30 τ = 4 , K = 17 25 a 1 20 a 2 a a i (AU) 15 10 5 0 3 . 3 3 . 2 P 2 3 . 1 P 2 / P 1 3 . 0 P 1 ex: HD 60532 b, c 2 . 9 2 . 8 2 . 7 Observed in 3/1 res. 0 . 35 0 . 30 0 . 25 e e 1 → Did not escape 0 . 20 e i 0 . 15 e 2 0 . 10 0 . 05 → Constraints on disk 0 . 00 5 (aspect ratio...) 4 e 1 3 e 1 / e 2 e 2 2 1 0 angles 350 300 ̟ 1 − ̟ 2 250 3 λ 2 − λ 1 − 2 ̟ 1 (deg) 200 150 100 50 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 × 10 6 × 10 6 × 10 6 × 10 6 t (yr) t (yr) t (yr) t (yr) Delisle, Correia, Laskar (2015) ESCAPE LOCKED IN RES. Jean-Baptiste DELISLE (Geneva) Dissipation in resonance October 8, 2015 10 / 14

  13. Tidal dissipation � e 1 � 2 4 + | k 2 | (1 + L ) � 2 � e 1 τ = T 1 τ c ≈ L τ α = T 2 e 2 4 L −| k 1 | (1 + L ) e 2 1 / 3 � � L ≈ m 1 k 1 � � � � m 2 k 2 � � • τ < τ c : Amplitude ր −→ separatrix crossing possible – τ < τ α : Diverging P 2 / P 1 > k 2 / k 1 EXT – τ > τ α : Converging P 2 / P 1 < k 2 / k 1 INT • τ > τ c : Amplitude ց −→ evolution close to libration center – q = 1 : Diverging P 2 / P 1 > k 2 / k 1 EXT – q > 1 : Staying in resonance P 2 / P 1 ≈ k 2 / k 1 RES Delisle, Laskar, Correia (2014) Jean-Baptiste DELISLE (Geneva) Dissipation in resonance October 8, 2015 11 / 14

  14. Constraints on planets nature ex: GJ 163 Parameter [unity] b c d [ M ⊕ ] m sin i 10 . 661 7 . 263 22 . 072 [days] P 8 . 633 25 . 645 600 . 895 [AU] a 0 . 06069 0 . 12540 1 . 02689 0 . 0106 0 . 0094 0 . 3990 e • Planets b, c close to 3:1 MMR (order 2) P 2 P 1 = 2 . 97 < 3 Internal circulation (converging) τ α < τ < τ c Delisle, Laskar, Correia (2014) Jean-Baptiste DELISLE (Geneva) Dissipation in resonance October 8, 2015 12 / 14

  15. Constraints on planets nature ∆ t 2 / ∆ t 1 0 500 1000 1500 2000 2500 3000 180 3.3 160 EXT INT Initial Amplitude 140 3.2 120 ( P 2 / P 1 ) f M 1 ( ◦ ) 3.1 100 80 3 60 RES 2.9 40 20 2.8 0 0 200 400 600 800 1000 1200 1400 GJ 163b, c are here ∆ t 2 /κ ∆ t 1 GJ 163b: gaz Delisle, Laskar, Correia (2014) GJ 163c: rock Jean-Baptiste DELISLE (Geneva) Dissipation in resonance October 8, 2015 13 / 14

  16. Conclusion • Classification of outcome of dissipative process in resonance • Constraints on systems properties from period ratio – Disk properties (disk-planet interactions) – Planets nature (tidal dissipation efficiency) • Analytical model – Better understanding of these complex process – First approximation of constraints – Need numerical simulations for precise constraints Jean-Baptiste DELISLE (Geneva) Dissipation in resonance October 8, 2015 14 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend