qcd reummation for heavy quarkonium production in high
play

QCD Reummation for Heavy Quarkonium Production in High Energy - PowerPoint PPT Presentation

QCD Reummation for Heavy Quarkonium Production in High Energy Collisions Zhongbo Kang Iowa State University PHENO 2008 SYMPOSIUM Madison, Wisconsin, Apr 28-30, 2008 based on work with J. -W. Qiu 1 Apr 29 , 2008 Zhongbo Kang, ISU Success of


  1. QCD Reummation for Heavy Quarkonium Production in High Energy Collisions Zhongbo Kang Iowa State University PHENO 2008 SYMPOSIUM Madison, Wisconsin, Apr 28-30, 2008 based on work with J. -W. Qiu 1 Apr 29 , 2008 Zhongbo Kang, ISU

  2. Success of NRQCD  NRQCD approach for quarkonium production � � ij → ( Q ¯ � O H � � Braaten, Bodwin, Lepage 1995 σ ( pp → H + X ) = dx 1 dx 2 φ i/p ( x 1 ) φ j/p ( x 2 )ˆ Q ) n n � σ _ i,j,n ij → ( Q ¯ : production of QQ state with quantum number n, calculable in pQCD � � ˆ Q ) n σ as a expansion of α s � O H n � : can be expanded in powers of v 2  Comparison with Tevatron data based on LO formula 10 1 _ " J/ ! +X)/dp T (nb/GeV) _ "! (2S)+X)/dp T (nb/GeV) BR(J/ !" µ + µ - ) d # (pp BR( ! (2S) " µ + µ - ) d # (pp $ s =1.8 TeV; | % | < 0.6 $ s =1.8 TeV; | % | < 0.6 -1 1 10 total total colour-octet 1 S 0 + 3 P J colour-octet 1 S 0 + 3 P J colour-octet 3 S 1 colour-octet 3 S 1 LO colour-singlet LO colour-singlet colour-singlet frag. colour-singlet frag. -1 -2 10 10 -2 -3 10 10 -3 -4 10 10 5 10 15 20 5 10 15 20 p T (GeV) p T (GeV) Apr 29 , 2008 Zhongbo Kang, ISU 2

  3. NLO contributions Color-singlet contribution for J/ ψ and Upsilon production at Tevatron NNLO P. Artoisenet, F. Maltoni, et.al. 2007 NLO LO associate LO direct Large uncertainty band ⇒ strong scale dependence Large NLO, NNLO contribution ⇒ how perturbative series converge? Apr 29 , 2008 Zhongbo Kang, ISU 3

  4. Scale dependence of the cross section  Scale dependence of the ttbar cross section at NLO With NLO correction included, scale- dependence is strongly reduced Linear scale Bonciani, Catani, Mangano, Nason, NPB529 (1998) 424  Scale dependence is still large for J/ ψ at NLO: large NLO corrections e + e − → J/ ψ + c ¯ c σ ( fb ) m = 1 . 4 ∼ 1 . 5GeV Λ = 0 . 338GeV √ s = 10 . 6GeV | R S (0) | 2 = 1 . 01GeV 3 Next-to-leading order 600 Leading order 400 Log scale 200 5.5 µ ( GeV ) 1.5 2.5 3.5 4.5 Zhang and Chao PRL98, 092003(2007) Campbell, Maltoni, Tramontano, PRL98(2007) 252002 Apr 29 , 2008 Zhongbo Kang, ISU 4

  5. Why NLO contribution is LARGE?  LO • Scale dependence from φ ( x, µ ) 2 α 3 s ( µ ) (2 m ) 4 1 • P T dependence α 3 P s P 8 P 8 T T T  NLO: new channel NLO: high power α s (µ) , low power in P T (2 m ) 2 α 4 s P 6 T P T  NLO to existing LO channels 1 α 4 s P 4 P T T Apr 29 , 2008 Zhongbo Kang, ISU 5

  6. Large logarithmic contributions  NNLO � P 2 � �� 1 α 4 T α s ln · s P 4 m 2 T P T  To have a stable perturbative expansion, one need resum all the large logarithms: resummation  Same large log contribution for color-octet channels Apr 29 , 2008 Zhongbo Kang, ISU 6

  7. New factorized formula with QCD resummation  Fragmentation contributions E. Braaten, et.al., 1993 � σ F ( pp → H + X ) = � dx 1 dx 2 dz φ i/p ( x 1 ) φ j/p ( x 2 )ˆ σ [ ij → k ] D k → H ( z ) i,j,k D k → H (z) resums all the logarithms. This is the dominant contribution when P T 2 >>m 2 ❖ Q: What is the relation between fragmentation contribution and fixed order results in NRQCD? P 2 T ∼ m 2 : σ ≈ σ P ert calculated by fixed order NRQCD. Logarithms are not important P 2 T ≫ m 2 : σ ≈ σ F Logarithms dominate / resummed ❖ How to transform smoothly between these two regimes? ❖ How to avoid double counting beyond LO?  We propose a new factorized formula: σ = σ Dir + σ F resum all the fragmentation logs No logs σ Dir = σ P ert − σ Asym separation between Direct and Fragmentation contribution depends on the definition of fragmentation function D(z, µ 2 ) Apr 29 , 2008 Zhongbo Kang, ISU 7

  8. Fragmentation function D q → J/ ψ (z f ,µ 2 )  Operator definition for D q → J/ ψ (z f ,µ 2 ) P z 2 d 4 k 4 k + δ ( z f − P + � f γ + T ( k, P ) D k → H ( z f , µ 2 ) = � � = k + )Tr T(k, P) (2 π ) 4 k 2 ≤ µ 2 k  Calculation of leading order fragmentation function: D (0)q → J/ ψ (z f ,µ 2 ) � ( z f − 1) 2 + 1 α 2 � z f µ 2 1 − 4 m 2 � � �� D (0) s 36 m 3 � O 8 ( 3 S 1 ) � · q → J/ ψ ( z f , µ ) = ln − z f 4 m 2 z f µ 2 z f  Evolution equation of D q →ψ (z f ,µ 2 ) : inhomogeneous term � 1 � z f � µ 2 d dµ 2 D q → J/ ψ ( z f , µ ) = γ q → J/ ψ ( z f , µ ) + α s d ξ D q → J/ ψ ( ξ , µ ) + · · · ξ P q → q 2 π ξ z f � ( z f − 1) 2 + 1 α 2 − 4 m 2 µ 2 − 4 m 2 � � � s 36 m 3 � O 8 ( 3 S 1 ) � γ q → J/ ψ ( z f , µ ) = θ µ 2 z f z f Apr 29 , 2008 Zhongbo Kang, ISU 8

  9. Case study: e + e - → J/ ψ +qq  NRQCD perturbative results 2 z = 2 E J/ ψ ξ = 4 m 2 √ s � � E 2 s J/ ψ ln + � z 2 − 4 ξ z L = zm 2 �� ( z − 1) 2 + 1 d σ P ert α 2 � O 8 ( 3 S 1 ) � = σ 0 · 2 + 2 ξ 2 − z + ξ 2 2 � ln z + z L � s √ s − 2 z L 18 m 3 z − z L dE J/ ψ z z z  How to identify the logarithms before the full calculations σ Asym k//P 2 P ˆ P k p k 3 ⊗ ≈ k d σ Asym z f = P + q → J/ ψ ( z f , µ 2 , 4 m 2 ) dz f k + = 1 ≈ σ 0 · D (0) 2 [ z + z L ] dE J/ ψ dE J/ ψ Apr 29 , 2008 Zhongbo Kang, ISU 9

  10. Smooth transition  Direct contribution σ Dir = σ P ert − σ Asym = σ P ert − 2 σ 0 · D (0) q → J/ ψ ( z, µ 2 ) -3 x 10 d σ Dir α 2 � O 8 ( 3 S 1 ) � σ 0 · 2 s = √ s 0.25 18 m 3 dE J/ ψ ! s/2 # 0 d # /dE " �� ( z − 1) 2 + 1 + 2 ξ 2 − z + ξ 2 2 � ln z + z L σ ! s=91GeV × − 2 z L 0.2 σ Dir z − z L z z z � ( z f − 1) 2 + 1 � z f µ 2 1 − 4 m 2 � � ��� − z f 0.15 σ F ln − z f 4 m 2 z f µ 2 z L z f 0.1 µ = 2 E J/ ψ  Full cross section 0.05 σ = σ Dir + σ F 0 5 10 15 20 25 30 35 40 -3 E " x 10 with evolved fragmentation function 0.25 ! s/2 # 0 d # /dE " ⇒ log resummed ! s=91GeV 0.2 ∼ d σ Dir σ d σ ❖ when E J/ ψ ~m σ P ert dE J/ ψ dE J/ ψ 0.15 σ F d σ F d σ ❖ when E J/ ψ >>m ∼ 0.1 dE J/ ψ dE J/ ψ  Compare to lowest order NRQCD calculation 0.05 0 Apr 29 , 2008 Zhongbo Kang, ISU 5 10 15 20 25 30 35 40 10 E "

  11. Hadronic collisions - in progress σ = σ Dir + σ F D (0) q → H ( z, µ 2 )  Direct contribution: σ Dir = σ P ert − σ Asym 2 2 2 2 + ⊗ + · · · P − P T T LO NLO  Fragmentation contribution: 2 2 σ F = ⊗ D g → H + ⊗ D Q → H + ... Stay tuned Apr 29 , 2008 Zhongbo Kang, ISU 11

  12. Summary  We proposed a QCD resummed factorization formula for heavy quarkonium production  We reorganized the perturbative series of NRQCD calculation  New formula is reliable for a wide range of collision energy Apr 29 , 2008 Zhongbo Kang, ISU 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend