relativistic heavy ion collisions
play

relativistic heavy-ion collisions Taesoo Song (Texas A&M Univ.) - PowerPoint PPT Presentation

Quarkonium production in relativistic heavy-ion collisions Taesoo Song (Texas A&M Univ.) 1. Introduction QCD phase diagram Electromagnetic probe : photon, dilepton Hard probe : jet, heavy quark, quarkonium Bulk property : elliptic flow,


  1. Quarkonium production in relativistic heavy-ion collisions Taesoo Song (Texas A&M Univ.)

  2. 1. Introduction

  3. QCD phase diagram Electromagnetic probe : photon, dilepton Hard probe : jet, heavy quark, quarkonium Bulk property : elliptic flow, HBT 3

  4. J/ ψ suppression J/ ψ suppression was suggested as a signature of quark- • gluon plasma (QGP) formation in relativistic heavy-ion collisions by Matsui and Satz. (If QGP is created in relativistic heavy-ion collisions, Debye color screening suppresses quarkonium production) c c c Recent lattice QCD studies claim that J/ ψ can survive in • QGP . (a thermometer of hot dense nuclear matter) 4

  5. 2. Quarkonium dissociation in hadronic nuclear matter

  6. Bethe-Salpeter vertex Multiplying ∆ 𝑞 1 to the left and ∆ −𝑞 2 to the right, and assuming 𝑗 (1 − 𝛿 0 )𝜔( 𝑞 𝜈 𝑞 1 , −𝑞 2 Δ −𝑞 2 ~ (1 + 𝛿 0 )𝛿 𝑗 𝑕 𝜈 ) 𝑞 0 ∆ 𝑞 1 Γ where 𝑞 ≡ (𝑞 1 − 𝑞 2 )/2 , in heavy quark limit NR Schrodinger equation for the Coulombic bound state 6

  7. Order counting in heavy-quark limit 𝑛 Φ : quarkonium mass 𝑛 : heavy quark mass 𝑂 𝑑 𝑕 2 Binding energy 𝜁 0 = 𝑛 2 ~𝑃(𝑛𝑕 4 ) • 16𝜌 2 ) , From energy conservation ( Φ + 𝑕 → 𝑅 + 𝑅 • 1 | 2 2 | 2 𝑛 Φ + 𝑙 0 = 2𝑛 + |𝑞 2𝑛 + |𝑞 2𝑛 , 𝑙 0 = 𝑙 ~𝑃 𝑛𝑕 4 2 ~𝑃 𝑛𝑕 2 , 𝑞 1 ~ 𝑞 Heavy quark propagator Bethe-Salpeter vertex 2 𝑛 Φ 𝜁 0 + 𝑞 Γ 𝜈 𝑞 1 , −𝑞 2 = 𝑛 𝑂 𝑑 × 1 + 𝛿 0 𝑗 1 − 𝛿 0 𝛿 𝑗 𝑕 𝜈 𝜔 𝑞 2 2 7

  8. Leading-order dissociation Φ + 𝑕 → 𝑅 + 𝑅 → Suppressed in large N c limit 8

  9. Quark-induced next-to-leading-order dissociation + 𝑟 Φ + 𝑟 → 𝑅 + 𝑅 9

  10. Gluon-induced next-to-leading-order dissociation + 𝑕 Φ + 𝑕 → 𝑅 + 𝑅 10

  11. Transition amplitudes Current conservation LO 𝑟 𝜈 𝑁 𝜈𝜉 = 𝑙 𝜉 𝑁 𝜈𝜉 = 0 quark-induced NLO 𝑟 𝜈 𝑁 𝜈 = 0 gluon-induced NLO 𝑟 𝜈 𝑁 𝜈𝜉𝜇 = 𝑙 1 𝜉 𝑁 𝜈𝜉𝜇 𝜇 𝑁 𝜈𝜉𝜇 = 0 = 𝑙 2 11

  12. Quark-induced next-to-leading-order dissociation + 𝑟 Φ + 𝑟 → 𝑅 + 𝑅 Collinear divergence 12

  13. Gluon-induced next-to-leading-order dissociation + 𝑕 Φ + 𝑕 → 𝑅 + 𝑅 Soft divergence Collinear divergence 13

  14. Mass factorization for collinear divergence → the divergence moves to parton distribution function(PDF) D j (x,Q 2 ) ; Renormalization of PDF 14

  15. One-loop diagrams for soft divergence Φ+𝑕→𝑅+𝑅 + 𝑁 𝑝𝑜𝑓−𝑚𝑝𝑝𝑞 Φ+𝑕→𝑅+𝑅 + ⋯ | 2 |𝑁 Φ+𝑕→𝑅+𝑅 | 2 = |𝑁 𝑢𝑠𝑓𝑓 Φ+𝑕→𝑅+𝑅 + ⋯ Φ+𝑕→𝑅+𝑅 | 2 + 2𝑁 𝑢𝑠𝑓𝑓 Φ+𝑕→𝑅+𝑅 * 𝑁 𝑝𝑜𝑓−𝑚𝑝𝑝𝑞 = |𝑁 𝑢𝑠𝑓𝑓 |𝑁 Φ+𝑕→𝑅+𝑅+𝑕 | 2 = |𝑁 𝑢𝑠𝑓𝑓 Φ+𝑕→𝑅+𝑅+𝑕 | 2 + ⋯ Soft (infrared) divergences are cancelled 15

  16. Introducing the effective four-point vertex Ultraviolet divergence from loop is cured by renormalization 16

  17. Cross section for bottomonium (1S) dissociation by partons LO gluon-NLO quark-NLO 17

  18. Bottomonium-hadron dissociation cross section • Factorization formula 𝜏 Φ+ℎ 𝑡 = 𝑒𝑦 𝐸 𝑗 (𝑦, 𝑅)𝜏 Φ+𝑗 (𝑦𝑡, 𝑅) ,𝑕 𝑗=𝑟,𝑟 Y(1S)+nucleon dissociation cross section (MRST PDF, Q 2 =1.25 GeV 2 ) LO+NLO LO 18

  19. 3. Quarkonium dissociation in partonic nuclear matter

  20. Temperature- Leading Ord rder (LO (LO) dependent wavefunction qua uark-induced Next xt to to Leading Ord rder (q (qNLO) Introduce thermal mass of partons: all divergences disappear glu luon-in induced Next xt to to Leading Ord rder (g (gNLO) 20

  21. Screened Cornell potential 𝜈(𝑈) 1 − 𝑓 −𝜈 𝑈 𝑠 − 𝜏 𝛽 𝑠 𝑓 −𝜈 𝑈 𝑠 • 𝑊 𝑠, 𝑈 = • 𝜏 = 0.192 GeV 2 : string tension • 𝛽 = 0.471 : Coulomb-like potential constant 𝑂 𝑔 𝑂 𝑑 • 𝜈 𝑈 = 3 + 6 𝑕𝑈 : screening mass in pQCD 𝜈 𝑈 →0 𝑊 𝑠, 𝑈 = 𝜏𝑠 − 𝛽 𝑠 lim • 21

  22. Charmonia wavefunctions from the screened Cornell potential J/ ψ (1S) χ c (1P) Ψ’(2S) Screening mass 289 MeV 298 MeV 306 MeV 315 MeV 323 MeV 332 MeV 340 MeV P (GeV) 22

  23. Thermal mass of quark and gluon (Quasi-particle method) Lattice equation of state Thermal masses of partons 23

  24. Thermal decay width Thermal width (GeV) 10 Γ 𝑈 = • 𝑒 3 𝑙 𝑒 𝑗 (2𝜌) 3 𝑜 𝑗 (𝑙, 𝑈)𝑤 𝑠𝑓𝑚. 𝜏 Φ+𝑗 1 ,𝑕 𝑗=𝑟,𝑟 0.13 0.23 0.33 0.43 0.53 Temperature (GeV) Survival probability from • 0.1 thermal decay Y(1S) 𝜐 Γ(𝑈) Y(2S) 𝑇 = 𝑓𝑦𝑞 − 𝑒𝜐 𝜐 0 Y(3S) 0.01 X(1P) X(2P) 0.001 24

  25. 4. Relativistic heavy-ion collisions

  26. Number of participants: number of nucleons participating heavy-ion collisions (total number of nucleons =number of participants + number of spectators) Number of binary collisions: number of N+N primary collisions in heavy-ion collisions 26

  27. 2+1 ideal hydrodynamics (boost invariant in longitudinal direction) 1 𝑢+𝑨 • Coordinate ( τ ≡ 𝑢 2 − 𝑨 2 , x, y, η = 2 ln 𝑢−𝑨 ) ∂ τ ( τ T 00 )+ ∂ x ( τ T 0x )+ ∂ y ( τ T 0y )=-p ∂ τ ( τ T 0x )+ ∂ x ( τ T xx )+ ∂ y ( τ T xy )=0 ∂ τ ( τ T 0y )+ ∂ x ( τ T xy )+ ∂ y ( τ T yy )=0 where T μν =(e+p)u μ u ν -pg μν , u μ = γ (1,v) + initial conditions + equation of state 27

  28. Equation of state Initial local entropy density • From lattice results 𝑒𝑡 𝑒𝜃 𝑦, 𝑧, 𝜐 0 = 1 − 𝛽 𝑜 𝑞𝑏𝑠𝑢 𝐵 + 𝛽𝑜 𝑑𝑝𝑚𝑚 2 𝑂 𝑞𝑏𝑠𝑢 where 𝑜 𝑞𝑏𝑠𝑢 = τ 0 Δ𝑦Δ𝑧 , 𝑜 𝑑𝑝𝑚𝑚 = 𝑂 𝑑𝑝𝑚𝑚 τ 0 Δ𝑦Δ𝑧 A and α are determined from particle multiplicities 28

  29. Time-evolution of hot nuclear matter 14.55 14.55 12.45 12.45 10.35 10.35 8.25 8.25 τ =0.6 fm/c τ =1.0 fm/c 6.15 6.15 4.05 4.05 0.4-0.5 0.4-0.5 1.95 1.95 0.3-0.4 0.3-0.4 -0.15 -0.15 0.2-0.3 0.2-0.3 -2.25 -2.25 -4.35 -4.35 0.1-0.2 0.1-0.2 -6.45 -6.45 0-0.1 0-0.1 -8.55 -8.55 -10.65 -10.65 -12.75 -12.75 -14.85 -14.85 14.55 14.55 -14.85 -12.45 -10.05 -7.65 -5.25 -2.85 -0.45 1.95 4.35 6.75 9.15 11.55 13.95 -14.85 -12.45 -10.05 -7.65 -5.25 -2.85 -0.45 1.95 4.35 6.75 9.15 11.55 13.95 12.45 12.45 10.35 10.35 8.25 8.25 6.15 6.15 4.05 4.05 τ =3.0 fm/c 1.95 0.3-0.4 1.95 τ =2.0 fm/c 0.2-0.3 -0.15 -0.15 0.2-0.3 0.1-0.2 -2.25 -2.25 0.1-0.2 -4.35 -4.35 0-0.1 0-0.1 -6.45 -6.45 -8.55 -8.55 -10.65 -10.65 -12.75 -12.75 -14.85 -14.85 -14.85 -12.45 -10.05 -7.65 -5.25 -2.85 -0.45 1.95 4.35 6.75 9.15 11.55 13.95 -14.85 -12.45 -10.05 -7.65 -5.25 -2.85 -0.45 1.95 4.35 6.75 9.15 11.55 13.95 29

  30. Hypersurfaces at chemical/kinetical freezeout temperatures T=160 MeV T=130 MeV 30

  31. p T spectra from Pb+Pb collisions at √s NN =2.76 TeV • Initial thermalization time, τ 0 =0.6 fm/c • Chemical freezeout temperature=160 MeV • Kinetic freezeout temperature=130 MeV 31

  32. Bottomonia suppression at LHC 27.1, 10.5, 10.7, and 0.8 % of 1S state come from the decay of 1P , 2P , 2S, and 3S states, respectively 32

  33. 5. Quarkonium regeneration

  34. R AA of J/ ψ at RHIC ( 𝑡 𝑂𝑂 = 200 GeV) and at LHC ( 𝑡 𝑂𝑂 = 2.76 TeV) Forward rapidity Mid-rapidity 34

  35. Statistical model Statistical model successfully describes particle ratios n i /n j , where n i , n j is particle number density in grand canonical ensemble  1       d E     1     j  j j    2   n dpp exp 1   d E  j 2   2 T            j j j 2 cfo n dpp exp 1             j 2   B I S C 2 T     j B j I 3 3 s j C j cfo          B I S C j B j I 3 3 s j C j A.Andronic et al. NPA 772, 167 (2006 ) 35

  36. Chemical nonequilibrium are produced in • Initially many heavy quark pairs 𝑅𝑅 relativistic heavy-ion collisions. annihilation is small, • Because the cross section for 𝑅𝑅 chemical thermalization of heavy quarks takes much longer time than the lifetime of fireball. • excessive heavy quarks is expressed by fugacity in the statistical model . pairs is small, we should use • If the number of 𝑅𝑅 canonical ensemble rather than grandcanonical ensemble. → canonical suppression  I n V ( ) 1     1 open C AA 2 N n V n V  c c open C hidden C 2 I ( n V ) 0 hidden C 36

  37. Fugacity of charm quarks in Au+Au collisions at √ s NN GeV NN =200 GeV canonical suppression 45 1.2 40 1 35 30 0.8 25 0.6 20 0.4 15 10 0.2 5 0 0 0 100 200 300 400 0 100 200 300 400 No. of participant No. of participant 37

  38. Kinetic nonequilibrium Tsallis distribution function for heavy quarks [1+ λ E/T] -1/ λ ↓ λ =0 e – E/T : Boltzman distribution 38

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend