the physics of interstellar photon dominated regions pdrs
play

The physics of interstellar photon-dominated regions (PDRs) - PowerPoint PPT Presentation

The physics of interstellar photon-dominated regions (PDRs) Chemistry I+II (based on lecture notes by E. van Dishoeck, Leiden) SS 2007 Basic Molecular Processes Formation processes X + Y XY + h radiative association: X + Y:g XY:g


  1. The physics of interstellar photon-dominated regions (PDRs) Chemistry I+II (based on lecture notes by E. van Dishoeck, Leiden) SS 2007

  2. Basic Molecular Processes Formation processes X + Y → XY + h ν radiative association: X + Y:g → XY:g → XY + g grain surface reaction: Destruction processes XY + h ν → X + Y photodissociation: XY + + e - → X + Y dissociative recombination: Rearrangement processes X + + YZ → XY + + Z ion-molecule reaction: X + + YZ → X + YZ + charge transfer reaction: X + YZ → X + YZ neutral-neutral reactions:

  3. Destruction processes 4. Dissociative recombination X + + e → X + h ν radiative ⇒ slow atomic ions: XY + + e → XY + h ν radiative ⇒ slow molecular ions: dissociative ⇒ very → X + Y rapid at low T XY + Need curve crossing XY * XY + between XZ + and energy repulsive XY X+Y potential for reaction X+Y to proceed fast. Occurs for most molecular ions. slow rapid

  4. Destruction processes • major uncertainties in models: products Williams et al. ‘96 Vejby_C et al. ‘97 + + e → XH n-1 + + H XH n + + H 2 branching → XH n-2 ratios → ... Example: H 3 O + + e 33% 5% → H 2 O + H → OH + H 2 18% 36% → OH + H + H 48% 29% → OH + H 2 + H 1% 30% 3-body products

  5. Destruction processes 5. Collision induced dissociation If T is high enough (T> 5000K), H 2 is destroyed by collisions H + H 2 → H + H + H He + H 2 → He + H + H H 2 + H 2 → H 2 + H + H H2 has no permanent dipole moment ⇒ significant population in high ν levels at high T ⇒ large dissociation rate CO has small dipole moment ⇒ radiative stabiliyation rapid ⇒ not much pop. in high ν ⇒ small dissociation rate

  6. Rearrangement processes 7. Ion-molecule reactions long-range attraction: ion-(induced) dipole ~ 1/R 4 ⇒ rapid at low T if reaction is exothermic X + + YZ collision energy in ISM ~ 0.01 eV ⇒ calculation of collision cross XY + + Z section via potential surface calculation requires high precision XYZ +

  7. Rearrangement processes + impact parameter b - +

  8. Rearrangement processes + critical impact parameter b c - +

  9. Rearrangement processes + + critical impact parameter b c - +

  10. Rearrangement processes V L V(R) μ 2 2 b v = V centrifugal potential L 2 2 R α 2 V eff e = − ion induced dipole V R el 4 2 R α μ 2 2 2 v e b = − + V el V eff 4 2 2 R 2R µ: reduced mass α : polarizability (~10 -24 cm 3 ) L= m b v : angular momentum in centrifugal potential

  11. Rearrangement processes V L α μ 2 2 2 V(R) e b v = − + V eff 4 2 2 R 2R μ α 2 2 2 2 ( b v ) 2 e V eff = 2 max : at V R α μ eff M R 2 2 2 R M 2 e b v centrifugal barrier can only be surmounted if: barrier V el μ 2 2 2 1 ( b v ) μ 2 v > α 2 2 2 e 1 ⎛ ⎞ α 2 4 4 e critical impact parameter = ⎜ ⎟ b μ c 2 ⎝ ⎠ v

  12. Rearrangement processes V L V(R) 1 ⎛ ⎞ α 2 4 4 e = ⎜ critical impact parameter: ⎟ b μ c 2 ⎝ ⎠ v V eff R R M centrifugal σ = π 2 cross section for reaction: b barrier c V el 1 ⎛ ⎞ α 2 2 e collision frequency: =< σ = π ⎜ ⎟ k v> 2 μ ⎝ ⎠ ⇒ k ~ 10 -9 cm 3 s -1 , independent of T!

  13. Rearrangement processes V L V(R) possible processes: X + + YZ → XY + + Z exchange → X + YZ + charge transfer V eff R R M many experiments performed at room T, centrifugal some at low T. Most reactions proceed at barrier V el Langevin rate, but some exceptions known! Rate coefficients for ion-polar molecule reactions may be factors of 10-100 larger than Langevin values at low T, because V(R)~R -2 (eg. C + + OH → CO + + H + + CS → HCS + + H 2 ) H 3

  14. Rearrangement processes • long range attraction: weak van der Waals interaction ~1/R 6 (Woon & Herbst `97) example: CN + C 2 H 2 → H + HC 3 N μ α 2 C µ 1 : dipole moment of CN = − − 6 1 2 ( ) V R α 2 : polarizability of C 2 H 2 el 6 6 R R α 1 : polarizability of CN I : ionization potential 3 I I = I α α dispersion coefficient 1 2 C + 6 1 2 2 I 1 2

  15. Rearrangement processes α α • simpler: = − 1 2 V ( ) R I el 6 R 13 ⎛ ⎞ α α 1 − =< σ >≈ π ⋅ < >≈ × 11 3 -1 1 2 ⎜ ⎟ v 13.6 v 3 4 10 cm s k I μ ⎝ ⎠ ⇒ k n-n << k i-n ⇒ neutral-neutral reactions unimportant (exception: reactions with radicals)

  16. Rearrangement processes • comparison: simple hard sphere collision without electromagnetic interaction

  17. Rearrangement processes • comparison: simple hard sphere collision without electromagnetic interaction (Bohr‘s radius: r = 5.3 × 10 -11 m = 5.3 × 10 -9 cm) R ≈ 10 -10 m=10 -8 cm ⇒ σ = R 2 π = 3 × 10 -16 cm 2 , v ≈ 10 4 cm/s k = σ v ≈ 3 × 10 -12 cm 3 s -1 Factor ≈ 1000 ≈ 10 -9 k ion-neutral cm 3 s -1 Factor ≈ 10 k neutral-neutral ≈ 4 × 10 -11 cm 3 s -1

  18. Rearrangement processes Comparison of effective cross section and radii (assumption: v=10 4 cm s -1 ) σ [cm 2 ] r [cm] k σ = 3 × 10 -16 hard sphere 10 -8 v σ 2 × 10 -7 ion-neutral 10 -13 = r π 4 × 10 -15 4 × 10 -8 neutral-neutral - dipole induction enlarges the effective target radius by a factor of 20 ! - van der Waals induction enlarges r eff by ~ 4

  19. Rearrangement processes • Adiabatic capture approximation (AC) – if collision energy < V eff (R) ⇒ react. prob=0 – if collision energy > V eff (R) ⇒ react. prob=1 (ignores angular dependencies, short range effects, quantum effects, activation energies) With AC theory, the rate coefficient is: 2 1 − + ∝ → n 2 k T ( ) T as T 0 - n for potentials of form r

  20. Rearrangement processes 2 1 − + ∝ → - n n 2 k T ( ) T as T 0, for potentials of form r interaction low T dependence charge-induced dipole r -4 T 0 charge-dipole r -2 T -1/2 charge-quadrupole r -3 T -1/6 dipole-dipole r -3 T -1/6 dipole-quadrupole r -4 T 0 dispersion r -6 T 1/6 neutral-neutral reactions typically factor 5 smaller than ion- molecule reactions at low T

  21. Time scales [cm 3 s -1 ] rate coefficient : k [cm -3 s -1 ] rate : k n A n B t ≅ (k n) -1 [s -1 ] reaction time :

  22. Time scales = − rad.association C+H → CH + h ν 17 3 -1 k 10 cm s 1 → = 17 t 10 s n = × � 13 5 t 10 s 3 10 yr = 4 n 10 photodiss. CO + h ν → C + O − = × 10 -1 k 2 10 s → = × 9 t 5 10 s = t 160 yr = 4 n 10

  23. Time scales ⎛ ⎞ 300 K − diss. HCO + + e - → CO + H = × 7 3 -1 ⎜ ⎟ k 1.1 10 cm s ⎝ ⎠ T recomb. − = × 6 3 -1 k 2.2 10 cm s = T 15 K 1 → = × 5 4.6 10 s t n e ≈ t 5 d = n 1 e − = × 9 3 -1 CO + h ν → C + O k 2.08 10 cm s ion-molecule reaction 1 = × 8 t 4.8 10 s [ ] H 2 = × 4 -1 4.8 10 s t [ ] = 4 H 10 2 ≈ 0.5 d

  24. Time scales + + H → H 2 + H + charge transf. H 2 − = × 10 3 -1 k 6.4 10 cm s reaction 1 = × 9 t 1.6 10 s n = × ≈ 5 t 1.6 10 2 d [ ] = 4 H 10 neutral-neutral H + HCO → CO + H 2 − = × 10 3 -1 k 2 10 cm s reaction 1 = × 9 t 5 10 s n = × 5 -1 t 5 10 s = 4 n 10 ≈ 6 d

  25. Time scales CR ionization H 2 + CR → H 2 + − = 17 -1 k 10 s 1 = 17 t 10 s n = ≈ × 13 5 t 10 s 3.2 10 yr [ ] = 4 H 10 dust-surface H + H:g → H 2 + g − = 17 3 -1 k 10 cm s reaction 1 = × 9 t 2.7 10 yr n = × 5 t 2.7 10 yr = 4 n 10

  26. Time scales Example: ratio H 2 /H d H ! [ ] [ ] [ ] = − + = k H k H 0 2 diss 2 form dt [ ] k H t 634 yr = = = ⋅ = × − 2 form 7 -3 diss n 2.4 10 n cm [ ] × 9 H k t 2.7 10 yr diss form ⇒ all hydrogen is atomar, unless FUV is attenuated diffuse clouds: [H2]/[H] ≈ 1 but: H2 is detected dense clouds: [H2]/[H]>>1 ⇒ - dust extinction - self shielding

  27. Degree of Ionization • electron production: + + e ~ ξ CR H 2 + CR → H 2 H 2 + CR → H + H + + e ~ 0.1 ξ CR He + CR → He + + e ~ ξ radiative recombination of atomic ions too slow ⇒ charge exchange from H + ,He + → moelcular ions (10-100 1/n yr cm -3 ) followed by dissociative recombination of molecular ions (0.3 1/n e yr cm -3 )

  28. Degree of Ionization d 1 ! [ ] [ ] [ ] = − + ξ = mol.ions mol.ions He 0 dt t diss rec . . 1 1 = − + ξ = 2 n n 0 e -3 0.3 yr cm 10 − ≈ 4 -3 n 10 cm n e 1 ≈ × 3 3 10 yr t diss rec . n exchange reactions t ≈ 10 -3 ...10 -2 yr 1/n compared to: t ≈ 10 4 yr 1/n rad. associations ⇒ many other reactions occur before 1 dissoc. recombination destroys ions/electrons

  29. Degree of Ionization ⇒ Ion – Molecule – Scheme: + + H 2 → H 3 + + H example: H 2 + + e → H 2 + H or H + H + H H 3 + + AB → ABH + + H 2 H 3 ...

  30. Degree of Ionization ⇒ Ion – Molecule – Scheme: H 2 + H 2 → H 3 + H + + C + + H 2 → CH + + H H 3 + + C → CH + + H 2 CH + + H 2 + + H → CH 2 + + H 2 → CH 3 + + H CH 2 + + H 2 → CH 5 + + h ν CH 3 + + e → CH 4 + H CH 5 → CH 3 + H 2 → CH 2 + H 2 +H → CH + 2H 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend