qcd in nuclei bound nucleon structure and short range
play

QCD in Nuclei: Bound Nucleon Structure and Short-Range Correlations - PowerPoint PPT Presentation

QCD in Nuclei: Bound Nucleon Structure and Short-Range Correlations Or Hen - MIT APS Division of Particles and Fields (DPF) Summer Meeting, August 2 nd 2017, Fermilab. Nuclear / Partonic Scale Separation Nuclear Field d Quark Piglets EMC:


  1. QCD in Nuclei: Bound Nucleon Structure and Short-Range Correlations Or Hen - MIT APS Division of Particles and Fields (DPF) Summer Meeting, August 2 nd 2017, Fermilab.

  2. Nuclear / Partonic Scale Separation Nuclear Field d Quark Piglets

  3. EMC: Bound Nucleons ≠ Free Nucleons (Anti) EMC Region Fermi Motion Shadowing d Ω dE ' = σ A = 4 α 2 E ' 2 d 2 σ M sin 2 θ ν cos 2 θ ( ) = ⎡ ⎤ 2 ⋅ x ⋅ f i x ⎛ ⎞ ⎛ ⎞ ∑ ( ) 2 F ⎟ + F 2 x , Q 2 F e i 1 2 ⎜ ⎜ ⎟ ⎢ ⎥ ⎝ ⎠ ⎝ ⎠ Q 4 ⎣ ⎦ 2 2 i

  4. EMC: No Scale Separation ??? (Anti) EMC Region Fermi Motion Shadowing d Ω dE ' = σ A = 4 α 2 E ' 2 d 2 σ M sin 2 θ ν cos 2 θ ( ) = ⎡ ⎤ 2 ⋅ x ⋅ f i x ⎛ ⎞ ⎛ ⎞ ∑ ( ) 2 F ⎟ + F 2 x , Q 2 F e i 1 2 ⎜ ⎜ ⎟ ⎢ ⎥ ⎝ ⎠ ⎝ ⎠ Q 4 ⎣ ⎦ 2 2 i

  5. EMC: Nuclear Effect! JLab 4 He 9 Be 12 C 12 C 27 Al 9 Be 40 Ca 56 Fe 111 Ag 197 Au 4 He SLAC J. Gomez et al., Phys. Rev. D 49 , 4348 (1994). J. Seely et al., Phys. Rev. Lett. 103 , 202301 (2009). 5

  6. Theory: 1000 papers, 3 Ideas 1. Proper treatment of ‘known’ nuclear effects [explain some of the effect, up to x≈0.5] • Nuclear Binding and Fermi motion, Pions, Coulomb Field. • No modification of bound nucleon structure. 2. Bound Nucleons are ‘larger’ than free nucleons. • Larger confinement volume => slower quarks. • Mean-Field effect. • Momentum Independent. • Static. 3. Short-Range Correlations • Beyond the mean-field. • Momentum dependent. • Dynamical! EMC – Everyone’s Model is Cool (G. A. Miller)

  7. Theory: 1000 papers, 3 Ideas 1. Proper treatment of ‘known’ nuclear effects [explain some of the effect, up to x≈0.5] • Nuclear Binding and Fermi motion, Pions, Coulomb Field. • No modification of bound nucleon structure. 2. Bound Nucleons are ‘larger’ than free nucleons. • Larger confinement volume => slower quarks. • Mean-Field effect. • Momentum Independent. • Static. 3. Short-Range Correlations • Beyond the mean-field. • Momentum dependent. • Dynamical! EMC – Everyone’s Model is Cool (G. A. Miller)

  8. Theory: 1000 papers, 3 Ideas 1. Proper treatment of ‘known’ nuclear effects [explain some of the effect, up to x≈0.5] • Nuclear Binding and Fermi motion, Pions, Coulomb Field. • No modification of bound nucleon structure. 2. Bound Nucleons are ‘larger’ than free nucleons. • Larger confinement volume => slower quarks. • Mean-Field effect. • Momentum Independent. • Static. 3. Short-Range Correlations • Beyond the mean-field. • Momentum dependent. • Dynamical! EMC – Everyone’s Model is Cool (G. A. Miller)

  9. Theory: 1000 papers, 3 Ideas 1. Proper treatment of ‘known’ nuclear effects [explain some of the effect, up to x≈0.5] • Nuclear Binding and Fermi motion, Pions, Coulomb Field. • No modification of bound nucleon structure. 2. Bound Nucleons are ‘larger’ than free nucleons. • Larger confinement volume => slower quarks. • Mean-Field effect. • Momentum Independent. • Static. 3. Short-Range Correlations • Beyond the mean-field. • Momentum dependent. • Dynamical! EMC – Everyone’s Model is Cool (G. A. Miller)

  10. Theory: 1000 papers, 3 Ideas 1. Proper treatment of ‘known’ nuclear effects [explain some of the effect, up to x≈0.5] • Nuclear Binding and Fermi motion, Pions, Coulomb Field. • No modification of bound nucleon structure. 2. Bound Nucleons are ‘larger’ than free nucleons. • Larger confinement volume => slower quarks. • Mean-Field effect. • Momentum Independent. • Static. 3. Short-Range Correlations • Beyond the mean-field. • Momentum dependent. • Dynamical! EMC – Everyone’s Model is Cool (G. A. Miller)

  11. EMC: (non-trivial) Nuclear Effect! J. Seely et al., Phys. Rev. Lett. 103 , 202301 (2009). 11

  12. Beyond the Mean-Field: Short-Range Correlations Temporal fluctuations of Nucleon that are close together in the nucleus (wave functions overlap) => Momentum space: pairs with high relative momentum and low c.m. momentum compared to the Fermi momentum (k F )

  13. Beyond the Mean-Field: Short-Range Correlations n p

  14. EMC and SRC are Correlated! EMC Slope 0.35 ≤ X B ≤ 0.7 SRC Scaling factors X B ≥ 1.4 O. Hen et al., Int. J. Mod. Phys. E. 22 , 1330017 (2013). O. Hen et al., Phys. Rev. C 85 (2012) 047301. L. B. Weinstein, E. Piasetzky, D. W. Higinbotham, J. Gomez, O. Hen, R. Shneor, Phys. Rev. Lett. 106 (2011) 052301.

  15. EMC and SRC are Correlated! EMC Effect Predominantly Associated EMC Slope 0.35 ≤ X B ≤ 0.7 with High-Momentum Nucleons? Practical Implications: 1. NuTeV anomaly [ask me later if interested] 2. Free neutron structure [Hen et al. PRC 2012] 1. d/u ratio at large-x B and SU(6) breaking [Hen et al. PRD SRC Scaling factors X B ≥ 1.4 2011] O. Hen et al., Int. J. Mod. Phys. E. 22 , 1330017 (2013). O. Hen et al., Phys. Rev. C 85 (2012) 047301. L. B. Weinstein, E. Piasetzky, D. W. Higinbotham, J. Gomez, O. Hen, R. Shneor, Phys. Rev. Lett. 106 (2011) 052301.

  16. Nucleon: Simple 2-State Model Blob-like config. (BLC) Point-like config. (PLC) PLC are smaller => Dominate high-x F 2 16

  17. Nucleon: Simple 2-State Model Blob-like config. (BLC) Point-like config. (PLC) A-1 Medium interacts with BLC, energy denominator increases, PLC Suppressed: 𝝑 𝑵 < 𝝑 17

  18. PLC Suppression Dominated by SRC! 18

  19. PLC Suppression Dominated by SRC! 19

  20. Small Amplitude => Large Probability! G.A. Miller

  21. arXiv: 1607.03065 (2016) EFT description of bound nucleon structure: EMC Slope SRC contact [SRC Scaling Factor] SRC Scaling factors

  22. Bound nucleons in EFT and QCD 6 𝑦, 𝑅 5 = 𝐺 : 𝑦, 𝑅 5 + 𝑕 5 𝐵, Λ 2 𝑔 5 𝑦, 𝑅 5 , Λ 1. EFT: 𝐺 5 5 |𝑂⟩ ()*+, = 𝑂⟩ + 𝜁 ()*+, − 𝜁 2 𝑂 ∗ ⟩ 2. QCD: Hen et al., Reviews of Modern Physics, In-Print (2017)

  23. Bound nucleons in EFT and QCD 6 𝑦, 𝑅 5 = 𝐺 : 𝑦, 𝑅 5 + 𝑕 5 𝐵, Λ 2 𝑔 5 𝑦, 𝑅 5 , Λ 1. EFT: 𝐺 5 5 |𝑂⟩ ()*+, = 𝑂⟩ + 𝜁 ()*+, − 𝜁 2 𝑂 ∗ ⟩ 2. QCD: “Free” “Modification” Hen et al., Reviews of Modern Physics, In-Print (2017)

  24. Bound nucleons in EFT and QCD 6 𝑦, 𝑅 5 = 𝐺 : 𝑦, 𝑅 5 + 𝑕 5 𝐵, Λ 2 𝑔 5 𝑦, 𝑅 5 , Λ 1. EFT: 𝐺 5 5 |𝑂⟩ ()*+, = 𝑂⟩ + 𝜁 ()*+, − 𝜁 2 𝑂 ∗ ⟩ 2. QCD: “Nuclear” “Partonic” Hen et al., Reviews of Modern Physics, In-Print (2017)

  25. Bound nucleons in EFT and QCD SRC contact 𝟑 |𝑩⟩ 𝜧 ∝ ⟨𝑩| 𝑶 C 𝑶 6 𝑦, 𝑅 5 = 𝐺 : 𝑦, 𝑅 5 + 𝑕 5 𝐵, Λ 2 𝑔 5 𝑦, 𝑅 5 , Λ 1. EFT: 𝐺 5 5 |𝑂⟩ ()*+, = 𝑂⟩ + 𝜁 ()*+, − 𝜁 2 𝑂 ∗ ⟩ 2. QCD: ∝ 𝒒 𝟑 − 𝒏 𝟑 𝟑𝑵 SRC dominated Hen et al., Reviews of Modern Physics, In-Print (2017)

  26. Bound nucleons in EFT and QCD 6 𝑦, 𝑅 5 = 𝐺 : 𝑦, 𝑅 5 + 𝑕 5 𝐵, Λ 2 𝑔 5 𝑦, 𝑅 5 , Λ 1. EFT: 𝐺 5 5 |𝑂⟩ ()*+, = 𝑂⟩ + 𝜁 ()*+, − 𝜁 2 𝑂 ∗ ⟩ 2. QCD: “SRC” “Partonic” Hen et al., Reviews of Modern Physics, In-Print (2017)

  27. Bound nucleons in EFT and QCD 6 𝑦, 𝑅 5 = 𝐺 : 𝑦, 𝑅 5 + 𝑕 5 𝐵, Λ 2 𝑔 5 𝑦, 𝑅 5 , Λ 1. EFT: 𝐺 5 5 |𝑂⟩ ()*+, = 𝑂⟩ + 𝜁 ()*+, − 𝜁 2 𝑂 ∗ ⟩ 2. QCD: “SRC” “Partonic” Need to probe and constrain both SRC and the partonic modification! [In comes JLab6 - JLab12 - EIC] Hen et al., Reviews of Modern Physics, In-Print (2017)

  28. Te Test of Bound Nucleon Modification? Focus on the deuteron: (1) Perform DIS off forward going nucleon. (2) Infer its momentum from the recoil partner. F 2 bound /F 2 free (x B =0.6) Binding / Off-Shell d(e,e’n s ) Rescaling Model LAD@Hall-C BAND@Hall-B PLC Suppression α Melnitchouk et al., Z. Phys. A 359 , 99-109 (1997)

  29. Tagging Concept d(e,e’N recoil ) • High resolution spectrometers for (e,e’) measurement in DIS kinematics • Large acceptance recoil proton \ neutron detector • Long target + GEM detector – reduce random coincidence 29

  30. Building Large-Acceptance Detectors Large Acceptance Detector (LAD@Hall-C) Backward Angle Neutron Detector (BAND@Hall-B) R&D @ MIT / UTSM / TAU Construction @ BATES rimental set up for CLAS12+BAND . The left figure shows

  31. Beyond the Mean-Field: Short-Range Correlations n p

  32. High-Momentum Scaling • A/d (e,e’) cross section ratios sensitive to n A (k)/n d (k) 2N-SRC • Observed scaling for x B ≥ 1.5. => n A (k>k F ) = a 2 (A)×n d (k) K. Egiyan et al., PRL 96 , 082501(2006). L. Frankfurt et al. , Phys. Rev. C 48 , 2451 (1993). N. Fomin et al., Phys. Rev. Lett. 108 , 092502 (2012). K. Egiyan et al., Phys. Rev. C 68 , 014313 (2003).

  33. High-Momentum Scaling • A/d (e,e’) cross section ratios sensitive to n A (k)/n d (k) • Observed scaling for x B ≥ 1.5. => n A (k>k F ) = a 2 (A)×n d (k) K. Egiyan et al., Phys. Rev. C 68 , 014313 (2003).

  34. SRC Probes: Exclusive (e,e’pN) Scattering Breakup the pair => Detect both nucleons => Reconstruct ‘initial’ state

  35. 3D Reconstruction 12 C 56 Fe 208 Pb Back-to-back = SRC pairs! 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend