pursuit curves
play

Pursuit Curves Molly Severdia May 15, 2008 Molly Severdia Pursuit - PowerPoint PPT Presentation

Pursuit Curves Molly Severdia May 15, 2008 Molly Severdia Pursuit Curves Assumptions y ( x 0 , V m t ) At t = 0, merchant at ( x 0 , 0), pirate at (0 , 0). V m t y Merchants speed is V m . Pirates speed is V p .


  1. Pursuit Curves Molly Severdia May 15, 2008 Molly Severdia Pursuit Curves

  2. Assumptions y ( x 0 , V m t ) ◮ At t = 0, merchant at ( x 0 , 0), pirate at (0 , 0). V m t − y ◮ Merchant’s speed is V m . ◮ Pirate’s speed is V p . ◮ Merchant travels along ( x, y ) x 0 − x vertical line x = x 0 . ◮ At time t ≥ 0, pirate at y = y ( x ) ( x , y ). x x 0 Figure: Geometry of pirate pursuit Molly Severdia Pursuit Curves

  3. y ( x 0 , V m t ) dy dx = V m t − y x 0 − x V m t − y ( x, y ) � x 0 − x � x � 2 � dy V p t = 1 + dz dz y = y ( x ) 0 x x 0 Figure: Geometry of pirate pursuit Molly Severdia Pursuit Curves

  4. Differential Equation for Pirate Pursuit ( x − x 0 ) dp � dx = − n 1 + p 2 ( x ) n = V m , p ( x ) = dy V p dx Molly Severdia Pursuit Curves

  5. Separable Equation 1 + p 2 = − n dx dp � x − x 0 � ln( p + 1 + p 2 ) + C = − n ln( x 0 − x ) �� � n � � − n dx = 1 dy 1 − x � 1 − x − 2 x 0 x 0 Molly Severdia Pursuit Curves

  6. Separable Equation 1 + p 2 = − n dx dp � x − x 0 � ln( p + 1 + p 2 ) + C = − n ln( x 0 − x ) �� � n � � − n dy dx = 1 1 − x � 1 − x − 2 x 0 x 0 � (1 − x / x 0 ) n − (1 − x / x 0 ) − n y ( x ) = 1 � n 2( x − x 0 ) + 1 − n 2 x 0 1 + n 1 − n Molly Severdia Pursuit Curves

  7. Results n=0.3 4 3.5 3 2.5 y(x) 2 1.5 1 0.5 0 0 5 10 15 x-axis Molly Severdia Pursuit Curves Figure: Results using ode45

  8. Circular Pursuit ”A dog at the center of a circular pond makes straight for a duck which is swimming [counterclockwise] along the edge of the pond. If the rate of swimming of the dog is to the rate of swimming of the duck as n : 1, determine the equation of the curve of pursuit...” Molly Severdia Pursuit Curves

  9. Generic Case y duck ρ ( t ) ρ ρ d ( t ) hound h ( t ) O x d ( t ) = h ( t ) + ρ ρ ρ ( t ) d ( t ) = x d ( t ) + iy d ( t ) h ( t ) = x h ( t ) + iy h ( t ) Molly Severdia Pursuit Curves

  10. Duck ◮ Duck’s position vector given by d ( t ) = x d ( t ) + iy d ( t ) Molly Severdia Pursuit Curves

  11. Duck ◮ Duck’s position vector given by d ( t ) = x d ( t ) + iy d ( t ) ◮ Duck’s velocity vector given by d d ( t ) = dx d dt + i dy d dt dt Molly Severdia Pursuit Curves

  12. Duck ◮ Duck’s position vector given by d ( t ) = x d ( t ) + iy d ( t ) ◮ Duck’s velocity vector given by d d ( t ) = dx d dt + i dy d dt dt ◮ Duck’s speed is �� dx d � 2 � 2 � � � dy d d d ( t ) � � � = + � � dt dt dt � Molly Severdia Pursuit Curves

  13. Hound ◮ Hound’s position vector given by h ( t ) = x h ( t ) + iy h ( t ) Molly Severdia Pursuit Curves

  14. Hound ◮ Hound’s position vector given by h ( t ) = x h ( t ) + iy h ( t ) ◮ Hound’s velocity vector is given by � � d h ( t ) d h ( t ) � · ρ ρ ρ ( t ) � � = (1) � � dt dt | ρ ρ ρ ( t ) | � Molly Severdia Pursuit Curves

  15. Hound ◮ Hound’s position vector given by h ( t ) = x h ( t ) + iy h ( t ) ◮ Hound’s velocity vector is given by � � d h ( t ) d h ( t ) � · ρ ρ ρ ( t ) � � = (1) � � dt dt | ρ ρ ρ ( t ) | � ◮ Hound’s speed is n times that of the duck, �� dx d � 2 � 2 � � � dy d d h ( t ) � � � = n + � � dt dt dt � Molly Severdia Pursuit Curves

  16. ◮ Equation (1) becomes �� dx d � 2 � 2 d h ( t ) � dy d · d ( t ) − h ( t ) = n + | d ( t ) − h ( t ) | dt dt dt Molly Severdia Pursuit Curves

  17. ◮ Equation (1) becomes �� dx d � 2 � 2 d h ( t ) � dy d · d ( t ) − h ( t ) = n + | d ( t ) − h ( t ) | dt dt dt ◮ In Cartesian Coordinates, �� dx d � 2 � 2 � dy d ( x d − x h ) + i ( y d − y h ) dx h dt + i dy h dt = n + · ( x d − x h ) 2 + ( y d − y h ) 2 � dt dt Molly Severdia Pursuit Curves

  18. ◮ Equation (1) becomes �� dx d � 2 � 2 d h ( t ) � dy d · d ( t ) − h ( t ) = n + | d ( t ) − h ( t ) | dt dt dt ◮ In Cartesian Coordinates, �� dx d � 2 � 2 � dy d ( x d − x h ) + i ( y d − y h ) dx h dt + i dy h dt = n + · ( x d − x h ) 2 + ( y d − y h ) 2 � dt dt ◮ Equating real and imaginary parts leads to... Molly Severdia Pursuit Curves

  19. Equations for General Pursuit �� dx d � 2 � 2 dx h � dy d x d − x h dt = n + · ( x d − x h ) 2 + ( y d − y h ) 2 dt dt � �� dx d � 2 � 2 � dy d y d − y h dy h dt = n + · ( x d − x h ) 2 + ( y d − y h ) 2 dt dt � Molly Severdia Pursuit Curves

  20. ◮ If the duck swims counterclockwise around a unit circle, x d ( t ) = cos( t ) , y d ( t ) = sin( t ) . Molly Severdia Pursuit Curves

  21. ◮ If the duck swims counterclockwise around a unit circle, x d ( t ) = cos( t ) , y d ( t ) = sin( t ) . ◮ Also, �� dx d � 2 � 2 � dy d � sin 2 ( t ) + cos 2 ( t ) = n + = n n dt dt Molly Severdia Pursuit Curves

  22. Circle Pursuit dx h cos( t ) − x h dt = n (cos( t ) − x h ) 2 + (sin( t ) − y h ) 2 � dy h sin( t ) − y h dt = n (cos( t ) − x h ) 2 + (sin( t ) − y h ) 2 � Molly Severdia Pursuit Curves

  23. n = 0 . 3 n = 0 . 3 1 1 0.5 0.5 0 0 −0.5 −0.5 −1 −1 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 Molly Severdia Pursuit Curves

  24. n = 0 . 5 n = 0 . 5 1 1 0.5 0.5 0 0 −0.5 −0.5 −1 −1 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 Molly Severdia Pursuit Curves

  25. n = 0 . 2 n = 0 . 7 1 1 0.5 0.5 0 0 −0.5 −0.5 −1 −1 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 Molly Severdia Pursuit Curves

  26. y duck ρ a ( x, y ) ω θ x x 0 ( a, 0) Molly Severdia Pursuit Curves

  27. ◮ Equation of tangent line: y cos( ω ) − x sin( ω ) = − a sin( ω − θ ) ◮ Equation of normal line: x cos( ω ) + y sin( ω ) = a cos( ω − θ ) − ρ Molly Severdia Pursuit Curves

  28. Differentiate tangent line d θ cos( ω )+ d ω � d ω � dx d θ sin( ω ) − dy d θ [ x cos( ω )+ y sin( ω )] = a cos( ω − θ ) d θ − 1 Molly Severdia Pursuit Curves

  29. Differentiate tangent line d θ cos( ω )+ d ω � d ω � dx d θ sin( ω ) − dy d θ [ x cos( ω )+ y sin( ω )] = a cos( ω − θ ) d θ − 1 ρ d ω d θ = a cos( ω − θ ) Molly Severdia Pursuit Curves

  30. Differentiate normal line dx d θ cos( ω ) − x sin( ω ) d ω d θ + dy d θ sin( ω ) + y cos( ω ) d ω d θ � d ω � − d ρ = − a sin( ω − θ ) d θ − 1 d θ Molly Severdia Pursuit Curves

  31. Differentiate normal line dx d θ cos( ω ) − x sin( ω ) d ω d θ + dy d θ sin( ω ) + y cos( ω ) d ω d θ � d ω � − d ρ = − a sin( ω − θ ) d θ − 1 d θ d ρ d θ = a [sin( ω − θ ) − n ] Molly Severdia Pursuit Curves

  32. ρ d ω d ρ d θ = a cos( ω − θ ) d θ = a [sin( ω − θ ) − n ] φ = ω − θ d ω d θ = d φ d θ + 1 ρ d 2 ρ d θ 2 + a ρ cos( φ ) = a 2 cos 2 ( φ ) d ρ d θ = a sin( φ ) − an Molly Severdia Pursuit Curves

  33. ρ d 2 ρ d θ 2 + a ρ cos( φ ) = a 2 cos 2 ( φ ) d ρ d θ = a sin( φ ) − an y ◮ lim θ →∞ ρ = c d θ = d 2 ρ ◮ d ρ d θ 2 = 0 R x ρ ◮ As θ → ∞ , ρ = a cos( φ ) a ◮ As θ → ∞ , sin( φ ) = n duck’s position hound’s limit cycle Molly Severdia Pursuit Curves

  34. As θ → ∞ ... � ρ � = a 2 [1 − sin 2 ( φ )] = a 2 (1 − n 2 ) a ρ a � θ →∞ ρ = a lim 1 − n 2 Molly Severdia Pursuit Curves

  35. The Limit Cycle Letting R be the radius of the limit cycle, R 2 + ρ 2 = a 2 R = na y R x ρ a duck’s position hound’s limit cycle Molly Severdia Pursuit Curves

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend