proton conducting electrolysers with tubular segmented in
play

Proton Conducting Electrolysers with Tubular Segmented-in-series - PowerPoint PPT Presentation

Proton Conducting Electrolysers with Tubular Segmented-in-series Cells for Hydrogen Production Marie-Laure Fontaine 1 , Einar Vllestad 2 , Jonathan M. Polfus 1 , Wen Xing 1 , Zuoan Li 1 , Ragnar Strandbakke 2 , Christelle Denonville 1 , Truls


  1. Proton Conducting Electrolysers with Tubular Segmented-in-series Cells for Hydrogen Production Marie-Laure Fontaine 1 , Einar Vøllestad 2 , Jonathan M. Polfus 1 , Wen Xing 1 , Zuoan Li 1 , Ragnar Strandbakke 2 , Christelle Denonville 1 , Truls Norby 2 , Rune Bredesen 1 1 SINTEF Materials and Chemistry, Norway 2 University of Oslo, Norway

  2. Ceramic Electrolysers: utilizing waste heat ΔH 2H 2 + O 2 2H 2 O Solid Oxide Electrolyzers (SOE) PCE SOE • Well proven technology • Long term stability challenges • Delamination of O 2 -electrode • Higher temperature Proton Ceramic Electrolysers (PCE) • Less mature technology • Fabrication and processing challenges • Produces dry H 2 directly • Potentially intermediate temperatures • Slow O 2 -electrode kinetics 2

  3. Operating Principles of Proton Ceramic Electrolysers (PCEs) e - U 2H 2 O O 2- 4H + 2H 2 O  O 2 + 4H + +4e - 4H + +4e -  2H 2 Z el,a Z el,c R ion O 2 R e- h + 0  e - + h + e - + h +  0 Anode Electrolyte Cathode 3

  4. High temperature electrolyser with novel proton ceramic tubular modules (2014-2017) Development of tubular O 2 a b c O 2 O 2 O 2 O 2 H 2 O H 2 O e - H 2 O e - e - e - e - e - cathode supported H + H + H + e - e - e - O 2 electrolyte cell O 2- H + H + H + BZY H + BZY H + BZY H + e - Conductor Protonic conductor nanoparticles Mixed Oxygen ion-electronic conductor Development and Single tube module optimization of anodes development and and current collection testing Multi-tube module testing Aim: 1kW demo Process integration and evaluation 4

  5. Scaling up tubular proton ceramic electrolysers • Why tubular design? • Simpler sealing technology, lower sealing area Better stress distribution during transient • conditions • Module design enables to close off a tube / replace it • Segmented-in-series cells • Retain high voltage

  6. Scaling up tubular proton ceramic electrolysers Wet milling of precursors Extrusion of BZCY-NiO support Spray- or dip-coating Solid State Reactive Sintering Dip-coating suspensions BZCY-NiO paste BaZr 0.7 Ce 0.2 Y 0.1 O 3- δ (BZCY72) 6

  7. Scaling up tubular proton ceramic electrolysers Dense electrolyte @ 1550 ° C – 24h 1610 ° C – 6h 40 μ m 7

  8. Development of new steam electrode materials T ( ° C) T ( ° C) 750 700 650 600 550 500 450 400 350 800 600 400 2 100 1.5 1.0 1 10 2 ) 0.5 2 )) log (( R p ( Ω cm Log( R p,app ( Ω cm 2 ) R p,app ( Ω cm 0 1 0.0 GBCF / BZCY X = 0.1 BSCF / BCY X = 0.5 -0.5 Pr 2 NiO 4 / BCY X = 0* -1 0.1 LSCF / BCY X = 0.3 BGCF / BCY -1.0 BGLC (x=0) / BZCY 0.04 Ω cm 2 BCZF -2 0.01 -1.5 1.0 1.1 1.2 1.3 1.4 1.5 1.6 0.8 1.0 1.2 1.4 1.6 1.8 -1 ) 1000/T (K -1 ) 1000 / T (K Ba 1-x Gd 0.8 La 0.2+x Co 2 O 6- δ displays best PCE steam electrode performance (symmetrical disk samples) 8

  9. Steam electrode processing 1. Cap and seal using glass-ceramic from CoorsTek 2. Deposit Ba 0.7 Gd 0.8 La 0.5 Co 2 O 6- δ as steam electrode by paint brush 3. Firing in dual atmosphere:  1000 °C  2% O 2 outside, 5% H 2 inside  E cell = 1.4 V during firing 4. Gold paste applied as current collector 9

  10. Electrolysis with BGLC electrode Current (A) 0.00 0.25 0.50 0.75 1.00 5 700°C 650°C n -1 ) bends off o 4 600°C i t H 2 production (NmL min c u d 550°C o r p 700°C 100 H 2 3 c i a 650°C 550°C d a r -1 a 600°C F 600°C 2 550°C Faradaic efficiency (%) 650°C 700°C 80 0 1 2 ) // ( Ω cm 0 1 OCV Z 60 50 2.0 100 2 300 Potential (V) 1.5 3 700°C 650°C 550°C 600°C 40 Anode: 1.0 1.5 2.0 4 5 6 7 8 Cathode: p tot = 3 bar Potential (V) 1.0 / ( Ω cm 2 ) Z p H 2 O = 1.5 bar p tot = 3 bar p O 2 = 30 mbar p O 2 = 80 mbar p H 2 = 0.3 bar Post-characterization: poor electrode adhesion 0 50 100 150 200 -2 ) Current density (mA cm 10

  11. Steam electrode processing 1. BZCY72-Ba 0.5 Gd 0.8 La 0.7 Co 2 O 6- δ applied as steam electrode  Fired in air at 1200°C for 5h  Infiltrated with nanocrystalline Ba 0.5 Gd 0.8 La 0.7 Co 2 O 6- δ  Thin Pt layer current collection 2. Capped and sealed at 1000°C  Semi-dual atmosphere to keep BGLC layer intact 3. NiO reduction at 800°C in 10% H 2 for 24h  Kept in electrolytic bias during reduction to avoid re-oxidation 11

  12. Electrolysis with BZCY-BGLC composite electrode -2 ) Current Density (mA cm 0 100 200 20 Faradaic H 2 production -1 ) Z real ( Ω ) H 2 production (NmL min 600°C 15 0.3 0.4 0.5 0.6 0.7 0.8 0.9 4 500°C 10 700°C 600°C 2 400°C 5 -Z im 500°C 700°C 0 0 400°C 2.0 400°C 500°C Voltage (V) -2 600°C 700°C 1.5 4 5 6 7 8 9 Anode: Z real ( Ω cm 2 ) Cathode: p tot = 3 bar p H 2 O = 1.5 bar p tot = 3 bar 1.0 p O 2 = 30 mbar p O 2 = 30 mbar p H 2 = 0.5 bar 0 1 2 3 12 Current (A)

  13. Improved faradaic efficiency primarily due to enhanced electrode kinetics 2.0 100 600C 4 -2 30 mA cm 80 Faradaic efficiency (%) Voltage (V) 2 ) 60 1.5 // ( Ω cm 2 Cell 1 40 Z 0 20 Cell 1 1.0 Cell 2 Cell 2 0 -2 0 50 100 150 200 4 5 6 7 8 9 -2 ) Current density (mA cm / ( Ω cm 2 ) Z 13

  14. Segment-in-series: print masking Novel interconnects H 2 O+O 2 electrode Electrolyte H 2 electrode Porous support 14

  15. Segment-in-series: print masking 15

  16. Segment-in-series: print masking Various thermal profiles Pore formers and sintering aid • Addition of pore formers • Addition of sintering aid (A) in the electrode + + pore formers (B) in the Temperature: xx°C – xxh 0.5°C/min reduction of temperature support • 1500 °C 1450°C – xxh 1.6°C/min 350°C • 1525 °C 100°C 0.5°C/min 1530 °C • 1.6°C/min • 1540 °C RT RT • 1550 °C • 1600 °C xx°C – 10h Dwell: 1.6°C/min 1.6°C/min • 2h • 5h RT RT Electrolyte 10h • Electrode Support 16

  17. Segment-in-series: print masking NiO- NiO- NiO- BZCY Support BZCY BZCY Support BZCY BZCY Collar for hang-firing

  18. Segment-in-series: print masking 300 µ m BZCY72 NiO-BZCY72 BZCY72 BZCY72 NiO-BZCY72 BZCY72 30 µ m 30 µ m 30 µ m 18

  19. Conclusions 2.0 100 80 Faradaic efficiency (%) Voltage (V) 60 1.5 • Tubular PCEs fabricated 40 • BZCY-NiO tubular cathode support 20 Cell 1 1.0 Cell 2 • Spray coated BZCY72 electrolyte 0 0 50 100 150 200 • BGLC-BZCY72 steam electrode -2 ) Current density (mA cm • Enhanced faradaic efficiencies observed with improved anode performance • Current densities of 220 mA cm -2 at 600°C obtained with > 80% faradaic efficiency • PCEs may suffer from electronic leakage due to p-type conductivity in oxidizing conditions

  20. Acknowledgements The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° 621244. Marie-Laure Fontaine 1 , Einar Vøllestad 2 , Jonathan M. Polfus 1 , Wen Xing 1 , Zuoan Li 1 , Ragnar Strandbakke 2 , Christelle Denonville 1 , Truls Norby 2 , Rune Bredesen 1 1 SINTEF Materials and Chemistry, Norway 2 University of Oslo, Norway

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend