protein structure modeling for structural genomics
play

Protein Structure Modeling for Structural Genomics Marc A. - PowerPoint PPT Presentation

Protein Structure Modeling for Structural Genomics Marc A. Marti-Renom Laboratories of Molecular Biophysics Pels Family Center for Biochemistry and Structural Biology The Rockefeller University Summary Comparative Modeling Alignment


  1. Protein Structure Modeling for Structural Genomics Marc A. Marti-Renom Laboratories of Molecular Biophysics Pels Family Center for Biochemistry and Structural Biology The Rockefeller University

  2. Summary  Comparative Modeling  Alignment problem  Modeling genes  Modeling genomes and structural genomics

  3. Why protein structure prediction? Y 2002 Y 2005 Sequences 700,000 millions Structures 17,000 50,000

  4. Why protein structure prediction? Theory Y 2002 Sequences 700,000 Structures 17,000 Experiment

  5. Why protein structure prediction? Theory Y 2002 Sequences 700,000 400,000 Structures 17,000 Experiment http://guitar.rockefeller.edu/modbase/

  6. Why protein structure prediction? Theory Y 2002 Sequences 700,000 400,000 Structures 17,000 Experiment http://guitar.rockefeller.edu/modbase/

  7. Principles of Protein Structure

  8. Principles of Protein Structure GFCHIKAYTRLIMVG… Folding Ab initio prediction

  9. Principles of Protein Structure GFCHIKAYTRLIMVG… Desulfovibrio vulgaris Anacystis nidulans Condrus crispus Anabaena 7120 Folding Evolution Ab initio prediction Threading Comparative Modeling

  10. Steps in Comparative Protein Structure Modeling START TARGET ASILPKRLFGNCEQTSDEGLK IERTPLVPHISAQNVCLKIDD VPERLIPERASFQWMNDK A. Š ali, Curr. Opin. Biotech. 6, 437, 1995. R. Sánchez & A. Š ali, Curr. Opin. Str. Biol. 7, 206, 1997. M. A. Martí-Renom et al . Ann. Rev. Biophys. Biomolec. Struct ., 29, 291, 2000.

  11. Steps in Comparative Protein Structure Modeling START TARGET TEMPLATE ASILPKRLFGNCEQTSDEGLK Template Search IERTPLVPHISAQNVCLKIDD VPERLIPERASFQWMNDK A. Š ali, Curr. Opin. Biotech. 6, 437, 1995. R. Sánchez & A. Š ali, Curr. Opin. Str. Biol. 7, 206, 1997. M. A. Martí-Renom et al . Ann. Rev. Biophys. Biomolec. Struct ., 29, 291, 2000.

  12. Steps in Comparative Protein Structure Modeling START TARGET TEMPLATE ASILPKRLFGNCEQTSDEGLK Template Search IERTPLVPHISAQNVCLKIDD VPERLIPERASFQWMNDK Target – Template ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE MSVIPKRLYGNCEQTSEEAIRIEDSPIV---TADLVCLKIDEIPERLVGE Alignment A. Š ali, Curr. Opin. Biotech. 6, 437, 1995. R. Sánchez & A. Š ali, Curr. Opin. Str. Biol. 7, 206, 1997. M. A. Martí-Renom et al . Ann. Rev. Biophys. Biomolec. Struct ., 29, 291, 2000.

  13. Steps in Comparative Protein Structure Modeling START TARGET TEMPLATE ASILPKRLFGNCEQTSDEGLK Template Search IERTPLVPHISAQNVCLKIDD VPERLIPERASFQWMNDK Target – Template ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE MSVIPKRLYGNCEQTSEEAIRIEDSPIV---TADLVCLKIDEIPERLVGE Alignment Model Building A. Š ali, Curr. Opin. Biotech. 6, 437, 1995. R. Sánchez & A. Š ali, Curr. Opin. Str. Biol. 7, 206, 1997. M. A. Martí-Renom et al . Ann. Rev. Biophys. Biomolec. Struct ., 29, 291, 2000.

  14. Steps in Comparative Protein Structure Modeling START TARGET TEMPLATE ASILPKRLFGNCEQTSDEGLK Template Search IERTPLVPHISAQNVCLKIDD VPERLIPERASFQWMNDK Target – Template ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE MSVIPKRLYGNCEQTSEEAIRIEDSPIV---TADLVCLKIDEIPERLVGE Alignment Model Building Model Evaluation OK? Yes END A. Š ali, Curr. Opin. Biotech. 6, 437, 1995. R. Sánchez & A. Š ali, Curr. Opin. Str. Biol. 7, 206, 1997. M. A. Martí-Renom et al . Ann. Rev. Biophys. Biomolec. Struct ., 29, 291, 2000.

  15. Steps in Comparative Protein Structure Modeling START TARGET TEMPLATE ASILPKRLFGNCEQTSDEGLK Template Search IERTPLVPHISAQNVCLKIDD VPERLIPERASFQWMNDK Target – Template ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE MSVIPKRLYGNCEQTSEEAIRIEDSPIV---TADLVCLKIDEIPERLVGE Alignment Model Building Model Evaluation No OK? Yes END A. Š ali, Curr. Opin. Biotech. 6, 437, 1995. R. Sánchez & A. Š ali, Curr. Opin. Str. Biol. 7, 206, 1997. M. A. Martí-Renom et al . Ann. Rev. Biophys. Biomolec. Struct ., 29, 291, 2000.

  16. Model Accuracy Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29 , 291-325, 2000. HIGH ACCURACY MEDIUM ACCURACY LOW ACCURACY NM23 CRABP EDN Seq id 77% Seq id 41% Seq id 33% X-RAY

  17. Model Accuracy Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29 , 291-325, 2000. HIGH ACCURACY MEDIUM ACCURACY LOW ACCURACY NM23 CRABP EDN Seq id 77% Seq id 41% Seq id 33% C α equiv 147/148 RMSD 0.41Å Sidechains Core backbone Loops X-RAY / MODEL

  18. Model Accuracy Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29 , 291-325, 2000. HIGH ACCURACY MEDIUM ACCURACY LOW ACCURACY NM23 CRABP EDN Seq id 77% Seq id 41% Seq id 33% C α equiv 147/148 C α equiv 122/137 RMSD 0.41Å RMSD 1.34Å Sidechains Sidechains Core backbone Core backbone Loops Loops Alignment X-RAY / MODEL

  19. Model Accuracy Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29 , 291-325, 2000. HIGH ACCURACY MEDIUM ACCURACY LOW ACCURACY NM23 CRABP EDN Seq id 77% Seq id 41% Seq id 33% C α equiv 147/148 C α equiv 90/134 C α equiv 122/137 RMSD 0.41Å RMSD 1.17Å RMSD 1.34Å Sidechains Sidechains Sidechains Core backbone Core backbone Core backbone Loops Loops Loops Alignment Alignment Fold assignment X-RAY / MODEL

  20. Model Accuracy as a Function of Target-Template Sequence Identity

  21. Alignment problem: Methods Sequence A: AGHLAHTRCELKLPTCRGNMSSRFC Sequence B: AGHLRHTRRCLRLPTAGNARFC Non specific 20x20 substitution matrix. ( eg , BLOSUM, PAM, etc…) ALIGN: DP pairwise method Seq.-Seq. + Gap penalties BLAST2SEQ: Local method PSI-BLAST: Local search method that AGHLAHTRCELKLPTCRGNMSSRFC Prof.-Seq. AGHLRHTRRCLRLPTAGNARFC uses multiple sequence information for one of the sequences. ALIGN4D: DP pairwise method that Prof.-Prof. uses multiple sequence information for both sequences.

  22. Alignment problem: Methods Sequence A: AGHLAHTRCELKLPTCRGNMSSRFC Sequence B: AGHLRHTRRCLRLPTAGNARFC Non specific 20x20 substitution matrix. ( eg , BLOSUM, PAM, etc…) ALIGN: DP pairwise method Seq.-Seq. + Gap penalties BLAST2SEQ: Local method AGHLAHTRCELK MSSRFC AGHLAHTRCELKLPTCRGNMSSRFC PSI-BLAST: Local search method that AGHLAHTRCELKLPTCRGNMSSRFC Prof.-Seq. AGHLRHTRRCLRLPTAGNARFC uses multiple sequence information for one of the sequences. ALIGN4D: DP pairwise method that Prof.-Prof. uses multiple sequence information for both sequences.

  23. Alignment problem: Methods Sequence A: AGHLAHTRCELKLPTCRGNMSSRFC Sequence B: AGHLRHTRRCLRLPTAGNARFC Non specific 20x20 substitution matrix. ( eg , BLOSUM, PAM, etc…) ALIGN: DP pairwise method Seq.-Seq. + Gap penalties BLAST2SEQ: Local method AGHLAHTRCELK MSSRFC AGHLAHTRCELKLPTCRGNMSSRFC PSI-BLAST: Local search method that AGHLAHTRCELKLPTCRGNMSSRFC Prof.-Seq. AGHLRHTRRCLRLPTAGNARFC RRCLRLPTAGNARFC AGHLRHTR AGNARFC AGHLR RRCLRLPTAGNARFC uses multiple sequence information for one of the sequences. ALIGN4D: DP pairwise method that Prof.-Prof. uses multiple sequence information for both sequences.

  24. Alignment problem Results: Comparison of alignment dependent measures Method % of Correct SeqA % of Correct SeqB Shift Score ALIGN 41.55 41.84 0.44 BLAST2Se 26.09 26.07 0.32 q PB (e-val) 42.95 43.11 0.48 ALIGN4D 55.34 55.49 0.61

  25. Alignment problem Results: Comparison of success rates % of alignments at % of alignments at % of alignments at % of alignments at Method 1Å 2Å 3Å average CE 20.50 82.50 100.00 82.50 ALIGN 8.50 23.00 35.00 21.00 BLAST2SEQ 8.00 21.50 30.00 20.00 PB (e-val) 8.00 31.00 45.50 29.50 ALIGN4D 11.50 37.00 55.50 35.50

  26. Alignment problem Results. Turn over. Mycoplasma genitalium MODPIPE Models Number of ORFs 479 Average ORF length 364 Not attempted 1% Attempted 30% Model and PsiBlast 41% Model only 16% PsiBlast only 12%

  27. Alignment problem Results. Turn over. Mycoplasma genitalium MODPIPE Models Number of ORFs 479 Average ORF length 364 Not attempted 1% Attempted 24% Model and PsiBlast 41% ALIGN4D 6% Model only 16% PsiBlast only 12%

  28. Alignment problem Results. Turn over. Mycoplasma genitalium MODPIPE Models Number of ORFs 479 Average ORF length 364 ~ 30 extra accurate models for M. g. genome. Not attempted 1% Attempted 24% Model and PsiBlast ~ 40,000 models 41% for TrEMBL-SP ALIGN4D 6% “genome”. Model only 16% PsiBlast only 12%

  29. Applications of Comparative Models D. Baker & A. Sali. Science 294, 93, 2001 . A. Š ali & J. Kuriyan. TIBS 22 , M20, 1999.

  30. Do mast cell proteases bind proteoglycans? Where? When? Predicting features of a model that are not present in the template 1. mMCPs bind negatively charged proteoglycans through electrostatic interactions? 2. Comparative models used to find clusters of positively charged surface residues. 3. Tested by site-directed mutagenesis. .

  31. Do mast cell proteases bind proteoglycans? Where? When? Predicting features of a model that are not present in the template 1. mMCPs bind negatively charged proteoglycans through electrostatic interactions? 2. Comparative models used to find clusters of positively charged surface residues. 3. Tested by site-directed mutagenesis. .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend