proper orthogonal decomposition theory and reduced order
play

Proper Orthogonal Decomposition: Theory and Reduced-Order Modeling - PowerPoint PPT Presentation

Proper Orthogonal Decomposition: Theory and Reduced-Order Modeling Stefan Volkwein M. Gubisch, O. Lass (U. Konstanz) M. Hinze (U Hamburg), K. Kunisch (U Graz) University of Konstanz, Department of Mathematics and Statistics, Numerics &


  1. Proper Orthogonal Decomposition: Theory and Reduced-Order Modeling Stefan Volkwein M. Gubisch, O. Lass (U. Konstanz) M. Hinze (U Hamburg), K. Kunisch (U Graz) University of Konstanz, Department of Mathematics and Statistics, Numerics & Optimization Group Summerschool on Redued-Basis Methods, M¨ unchen, 16. September 2013 Stefan Volkwein POD: Theory and Reduced-Order Modeling 1 / 29

  2. Introduction Motivation Motivation for our Research Areas [Grimm, Gubisch, Iapichino, Lass, Mancini, Trenz, V ., Wesche] Problem : time-variant, nonlinear, parametrized PDE systems Efficient and reliable numerical simulation in multi-query cases → finite element or finite volume discretizations too complex Multi-query examples fast simulation for different parameters on small computers parameter estimation, optimal design and feedback control → usage of a reduced-order S URROGATE M ODEL Time-variant, nonlinear coupled PDEs → methods from linear system theory not directly applicable Nonlinear model-order reduction → proper orthogonal decomposition and reduced-basis method Error control for reduced-order model → new a-priori and a-posteriori error analysis PDE — Partial Differential Equation Stefan Volkwein POD: Theory and Reduced-Order Modeling 2 / 29

  3. Introduction Singular Value Decomposition (SVD) Singular Value Decomposition (SVD) Given vectors : y 1 ,..., y n ∈ R m Data matrix : Y = [ y 1 ,..., y n ] ∈ R m × n Singular value decomposition : U ∈ R m × m , V ∈ R n × n orthogonal � � D 0 U ⊤ YV = = Σ ∈ R m × n 0 0 with D = diag ( σ 1 ,..., σ d ) ∈ R d × d Singular values : σ 1 ≥ ... ≥ σ d > 0, rank Y = d Frobenius norm : � m � 1 / 2 n Y 2 for Y ∈ R m × n ∑ ∑ � Y � F = ij i = 1 j = 1 Approximation quality : d 2 � Y − Y ℓ � σ 2 F = ∑ i i = ℓ + 1 � � D ℓ 0 with Y ℓ = U V ⊤ and D ℓ = diag ( σ 1 ,..., σ ℓ ) 0 0 Stefan Volkwein POD: Theory and Reduced-Order Modeling 3 / 29

  4. Introduction Singular Value Decomposition and Images d Approximation � Y − Y ℓ � 2 σ 2 F = i for a given Photo ∑ i = ℓ + 1 0,5% der Matrixbasis −> 45% Information 1% der Matrixbasis −> 56% Information 5% der Matrixbasis −> 76% Information 10% der Matrixbasis −> 85% Information 20% der Matrixbasis −> 92% Information Originalbild Stefan Volkwein POD: Theory and Reduced-Order Modeling 4 / 29

  5. Outline of Lecture 1 Outline of Lecture 1 The method of Proper Orthogonal Decomposition (POD) Reduced-order modeling utilizing the POD method Stefan Volkwein POD: Theory and Reduced-Order Modeling 5 / 29

  6. The POD Method The Method of Proper Orthogonal Decomposition (POD) Topics : Definition of a (discrete variant of the) POD basis Efficient computation of a POD basis POD for dynamical systems A continuous variant of the POD basis and asymptotic analysis Stefan Volkwein POD: Theory and Reduced-Order Modeling 6 / 29

  7. The POD Method Discrete Variant of the POD Method POD as a Minimization Problem Given multiple snapshots : { y k j } n j = 1 ⊂ X , 1 ≤ k ≤ ℘ , with a (real) Hilbert space X Snapshot subspace : � � � y k � 1 ≤ j ≤ n and 1 ≤ k ≤ ℘ ⊂ X V = span j with dimension d ∈ { 1 ,..., min ( n ℘ , dim X ) } Proper Orthogonal Decomposition (POD) : for any ℓ ∈ { 1 ,..., d } solve ℘ n ℓ � � 2 � y k � y k { ψ i } ℓ ∑ ∑ � ∑ � i = 1 ⊂ X and � ψ i , ψ j � X = δ ij , 1 ≤ i , j ≤ ℓ ( P ℓ ) min α j j − j , ψ i � X ψ i s.t. � X k = 1 j = 1 i = 1 with positive weights α j Optimal solution to (P ℓ ) : POD basis { ¯ ψ i } ℓ i = 1 of rank ℓ Orthogonal projection : define P ℓ : X → V ℓ = span { ¯ ψ 1 ,..., ¯ ψ ℓ } ⊂ V by ℓ P ℓ ψ = ∑ � ψ , ¯ ψ i � X ¯ for ψ ∈ X ψ i i = 1 ℘ n ℓ ℘ n � � 2 � � 2 � � y k � y k � y k j − P ℓ y k � � ⇒ ∑ ∑ α j j − ∑ j , ψ i � X ψ i X = ∑ ∑ α j � j X k = 1 j = 1 i = 1 k = 1 j = 1 Stefan Volkwein POD: Theory and Reduced-Order Modeling 7 / 29

  8. The POD Method Discrete Variant of the POD Method Equivalent POD Formulation POD as a minimization problem : for any ℓ ∈ { 1 ,..., d } solve ℘ n ℓ � � 2 � y k � y k { ψ i } ℓ ∑ ∑ � ∑ � i = 1 ⊂ X and � ψ i , ψ j � X = δ ij , 1 ≤ i , j ≤ ℓ ( P ℓ ) min α j j − j , ψ i � X ψ i s.t. � X k = 1 j = 1 i = 1 Orthonormal basis elements : for 1 ≤ j ≤ n and 1 ≤ k ≤ ℘ we have ℓ ℓ � � 2 2 2 � y k � y k X = � y k � y k � ∑ � ∑ j − j , ψ i � X ψ i j � X − j , ψ i � � X i = 1 i = 1 POD as a maximization problem : for ℓ ∈ { 1 ,..., d } solve ℘ n ℓ 2 � y k { ψ i } ℓ ( ˆ P ℓ ) ∑ ∑ ∑ i = 1 ⊂ X and � ψ i , ψ j � X = δ ij , 1 ≤ i , j ≤ ℓ max α j j , ψ i � s.t. X k = 1 j = 1 i = 1 � ℓ � n � � 2 � y k ⇒ maximize the first ℓ Fourier coefficient j , ψ i � on average α j for all k ∑ ∑ X i = 1 j = 1 P ℓ ) : for Ψ = ( ψ 1 ,..., ψ ℓ ) ∈ X ℓ and Λ = (( λ ij )) ∈ R ℓ × ℓ define Lagrange functional for (ˆ ℘ n ℓ ℓ ℓ 2 � � � y k ∑ ∑ ∑ ∑ ∑ L (Ψ , Λ) = α j j , ψ i � X + λ ij δ ij −� ψ i , ψ j � X k = 1 j = 1 i = 1 i = 1 j = 1 Stefan Volkwein POD: Theory and Reduced-Order Modeling 8 / 29

  9. The POD Method Discrete Variant of the POD Method Lagrangian Framework in (Infinite Dimensional) Optimization POD as a maximization problem : for any ℓ ∈ { 1 ,..., d } solve ℘ n ℓ 2 � y k { ψ i } ℓ ∑ ∑ ∑ ( ˆ P ℓ ) max α j j , ψ i � s.t. i = 1 ⊂ X and � ψ i , ψ j � X = δ ij , 1 ≤ i , j ≤ ℓ X k = 1 j = 1 i = 1 P ℓ ) : for Ψ = ( ψ 1 ,..., ψ ℓ ) ∈ X ℓ and Λ = (( λ ij )) ∈ R ℓ × ℓ define Lagrange functional for (ˆ ℘ n ℓ ℓ ℓ 2 � � y k ∑ ∑ ∑ ∑ ∑ L (Ψ , Λ) = α j j , ψ i � X + λ ij δ ij −� ψ i , ψ j � X k = 1 j = 1 i = 1 i = 1 j = 1 Necessary optimality conditions : let ¯ ψ ℓ ) denote a solution to ( ˆ P ℓ ) Ψ = ( ¯ ψ 1 ,..., ¯ Constraint qualification condition : there is a Lagrange multiplier ¯ Λ = ((¯ λ ij )) with ∂ L ∂ L (¯ Ψ , ¯ (¯ Ψ , ¯ Λ) = 0 in X for 1 ≤ i ≤ ℓ and Λ) = 0 in R for 1 ≤ i , j ≤ ℓ ∂ψ i ∂λ ij ⇒ first-order necessary optimality conditions for ( ˆ P ℓ ) Stefan Volkwein POD: Theory and Reduced-Order Modeling 9 / 29

  10. The POD Method Discrete Variant of the POD Method First-Order Necessary Optimality Conditions POD as a maximization problem : for any ℓ ∈ { 1 ,..., d } solve ℘ n ℓ 2 � y k ∑ ∑ ∑ { ψ i } ℓ ( ˆ P ℓ ) max α j j , ψ i � s.t. i = 1 ⊂ X and � ψ i , ψ j � X = δ ij , 1 ≤ i , j ≤ ℓ X k = 1 j = 1 i = 1 First-order necessary optimality conditions : ¯ ψ ℓ ) and ¯ Λ = ((¯ Ψ = ( ¯ ψ 1 ,..., ¯ λ ij )) satisfy ∂ L (¯ Ψ , ¯ Λ) = 0 in X for 1 ≤ i ≤ ℓ and � ψ i , ψ j � X = δ ij for 1 ≤ i , j ≤ ℓ ∂ψ i ℘ n α j � ψ , y k j � X y k Summation operator : define R : X → X as R ψ = j for ψ ∈ X ∑ ∑ k = 1 j = 1 Theorem : X separable Hilbert space a) R is linear, compact, selfadjoint and nonnegative ψ i } i ∈ I and eigenvalues { ¯ b) there are eigenfunctions { ¯ λ i } i ∈ I with ψ i = ¯ ¯ λ 1 ≥ ¯ λ 2 ≥ ... ≥ ¯ λ d > ¯ R ¯ λ i ¯ ψ i , λ d + 1 = ... = 0 ψ i } ℓ i = 1 solves ( ˆ P ℓ ) and ( P ℓ ) c) { ¯ ℘ n ℘ n ℓ ℓ ℓ � � 2 2 ¯ X = ∑ ¯ � y k � y k � y k ∑ ∑ ∑ j , ¯ ∑ ∑ ∑ � ∑ j , ¯ ψ i � X ¯ � d) α j ψ i � X = λ i , α j j − ψ i λ i � k = 1 j = 1 i = 1 i = 1 k = 1 j = 1 i = 1 i >ℓ Stefan Volkwein POD: Theory and Reduced-Order Modeling 10 / 29

  11. The POD Method Discrete Variant of the POD Method POD Basis Computation POD : for any ℓ ∈ { 1 ,..., d } solve ℘ n ℓ � � 2 � y k � y k { ψ i } ℓ ∑ ∑ � ∑ � i = 1 ⊂ X and � ψ i , ψ j � X = δ ij , 1 ≤ i , j ≤ ℓ ( P ℓ ) min α j j − j , ψ i � X ψ i s.t. � X k = 1 j = 1 i = 1 Eigenvalue problem : ℘ n j = ¯ λ 1 ≥ ¯ ¯ λ 2 ≥ ... ≥ ¯ ψ i , y k j � X y k R ¯ ∑ ∑ α j � ¯ λ i ¯ ψ i for 1 ≤ i ≤ ℓ, ψ i = λ ℓ > 0 k = 1 j = 1 ψ i } ℓ Approximation quality : POD basis { ¯ i = 1 of rank ℓ ℘ n ℓ � � 2 � y k � y k X = ∑ ¯ ∑ ∑ � ∑ � α j j − j , ¯ ψ i � X ¯ ψ i λ i � k = 1 j = 1 i = 1 i >ℓ ⇒ for fastly decreasing ¯ λ i ’s good approximation quality even for small ℓ ≪ d = dim V In practical computations : heuristical choice for ℓ by posing ℓ ℓ ¯ ¯ λ i λ i ∑ ∑ i = 1 i = 1 E ( ℓ ) = = ≈ 99 % ¯ ℘ n ∑ λ i 2 α j � y k j � ∑ ∑ i ∈ I X k = 1 j = 1 ⇒ { ¯ λ i } i >ℓ not required for the computation of E ( ℓ ) Stefan Volkwein POD: Theory and Reduced-Order Modeling 11 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend