the singular value decomposition
play

The Singular Value Decomposition COMPSCI 527 Computer Vision - PowerPoint PPT Presentation

The Singular Value Decomposition COMPSCI 527 Computer Vision COMPSCI 527 Computer Vision The Singular Value Decomposition 1 / 21 Outline 1 Math Corners and the SVD: Motivation 2 Orthogonal Matrices 3 Orthogonal Projection 4 The Singular


  1. The Singular Value Decomposition COMPSCI 527 — Computer Vision COMPSCI 527 — Computer Vision The Singular Value Decomposition 1 / 21

  2. Outline 1 Math Corners and the SVD: Motivation 2 Orthogonal Matrices 3 Orthogonal Projection 4 The Singular Value Decomposition 5 Principal Component Analysis COMPSCI 527 — Computer Vision The Singular Value Decomposition 2 / 21

  3. Math Corners and the SVD: Motivation Math Corners and the SVD: Motivation • A few math installments to get ready for later technical topics are sprinkled throughout the course • The Singular Value Decomposition (SVD) gives the most complete geometric picture of a linear mapping • SVD yields orthonormal vector bases for the null space, the row space, the range, and the left null space of a matrix • SVD leads to the pseudo-inverse , a way to give a linear system a unique and stable approximate solution • SVD leads to principal component analysis , a technique to reduce the dimensionality of a set of vector data while retaining as much information as possible • Dimensionality reduction improves the ability of machine learning methods to generalize COMPSCI 527 — Computer Vision The Singular Value Decomposition 3 / 21

  4. Orthogonal Matrices Why Orthonormal Bases are Useful • n -dim linear space S ⊆ R m (so n ≤ m ) • p = [ p 1 , . . . , p m ] T ∈ S (standard basis) • v 1 , . . . , v n : an orthonormal basis for S : v T i v j = δ ij (Ricci delta) • Then there exists q = [ q 1 , . . . , q n ] T s.t. p = q 1 v 1 + . . . + q n v n • Matrix form: p = V q where V = [ v 1 , . . . , v n ] ∈ R m × n v T i p = COMPSCI 527 — Computer Vision The Singular Value Decomposition 4 / 21

  5. Orthogonal Matrices The Left Inverse of an Orthogonal Matrix q i = v T i p (Finding coefficients q i is easy!) • Rewrite v T i v j = δ ij in matrix form V = [ v 1 , . . . , v n ] ∈ R m × n V T V = • LV = I with L = V T COMPSCI 527 — Computer Vision The Singular Value Decomposition 5 / 21

  6. Orthogonal Matrices Left and Right Inverse of an Orthogonal Matrix • LV = I with L = V T • Can we have R such that VR = I ? • That would be the right inverse • What if m = n ? COMPSCI 527 — Computer Vision The Singular Value Decomposition 6 / 21

  7. Orthogonal Matrices Orthogonal Transformations Preserve Norm ( m ≥ n ) y = V x : R n → R m � y � 2 = COMPSCI 527 — Computer Vision The Singular Value Decomposition 7 / 21

  8. Orthogonal Projection Projection Onto a Subspace ( m ≤ n ) • Projection of b ∈ R m onto subspace S ⊆ R m is the point p ∈ S closest to b • Let V ∈ R m × n an orthonormal basis for S (That is, V is an orthogonal matrix ) • b − p ⊥ v i for i = 1 , . . . , n that is, V T ( b − p ) = 0 • Projection of b ∈ R m onto S is p = VV T b (optional proofs in an Appendix) COMPSCI 527 — Computer Vision The Singular Value Decomposition 8 / 21

  9. The Singular Value Decomposition Linear Mappings √ √   3 3 0 1 b = A x : R n → R m . Example: A = ( m = n = 3 ) √ − 3 3 0   2 1 1 0 range ( A ) ↔ rowspace ( A ) COMPSCI 527 — Computer Vision The Singular Value Decomposition 9 / 21

  10. The Singular Value Decomposition The Singular Value Decomposition: Geometry √ √   3 3 0 1 b = A x where A = − 3 3 0 √   2 1 1 0 COMPSCI 527 — Computer Vision The Singular Value Decomposition 10 / 21

  11. The Singular Value Decomposition The Singular Value Decomposition: Algebra A v 1 = σ 1 u 1 A v 2 = σ 2 u 2 ≥ σ 2 > σ 3 = 0 σ 1 u T 1 u 1 = 1 u T 2 u 2 = 1 u T 3 u 3 = 1 u T 1 u 2 = 0 u T 1 u 3 = 0 u T 2 u 3 = 0 v T 1 v 1 = 1 v T 2 v 2 = 1 v T 3 v 3 = 1 v T 1 v 2 = 0 v T 1 v 3 = 0 v T 2 v 3 = 0 COMPSCI 527 — Computer Vision The Singular Value Decomposition 11 / 21

  12. The Singular Value Decomposition The Singular Value Decomposition: General For any real m × n matrix A there exist orthogonal matrices ∈ R m × m � � U = u 1 · · · u m � � ∈ R n × n = v 1 · · · v n V such that U T AV = Σ = diag ( σ 1 , . . . , σ p ) ∈ R m × n where p = min( m , n ) and σ 1 ≥ . . . ≥ σ p ≥ 0. Equivalently, A = U Σ V T . COMPSCI 527 — Computer Vision The Singular Value Decomposition 12 / 21

  13. The Singular Value Decomposition Rank and the Four Subspaces  σ 1  ...    v 1      σ r .    .    0 .         v r A = U Σ V T = [ u 1 , . . . , u r , u r + 1 , . . . , u m ]   ...       v r + 1        0  .     .   .  0 · · · · · · 0       . .  v n . .   . .   0 · · · · · · 0 [drawn for m > n ] COMPSCI 527 — Computer Vision The Singular Value Decomposition 13 / 21

  14. Principal Component Analysis Principal Component Analysis • We used the SVD to view a matrix as a map • We can also view a matrix as a data set • A is a m × n matrix with n data points in R m COMPSCI 527 — Computer Vision The Singular Value Decomposition 14 / 21

  15. Principal Component Analysis Principal Component Analysis • Let k ≤ m be some “smaller dimensionality” • How to approximate the m -dimensional data in A with points in k dimensions? (Data compression, dimensionality reduction ) • The columns in A are a cloud of points around the mean µ ( A ) = 1 n A 1 n • Center the matrix: A c = A − µ ( A ) 1 T n COMPSCI 527 — Computer Vision The Singular Value Decomposition 15 / 21

  16. Principal Component Analysis Principal Component Analysis COMPSCI 527 — Computer Vision The Singular Value Decomposition 16 / 21

  17. Principal Component Analysis Principal Component Analysis • How to approximate the m -dimensional centered cloud A c in k ≪ m dimensions? • A c = U Σ V T =    v 1  σ 1 . ... .     .         v k σ k     [ u 1 , . . . , u k , u k + 1 , . . . , u m ]     v k + 1 σ k + 1        .  ... .     .     v n σ min( m , n )     v 1 σ 1 . ... • A c ≈ U k Σ k V T . k = [ u 1 , . . . , u k ]     .     v k σ k COMPSCI 527 — Computer Vision The Singular Value Decomposition 17 / 21

  18. Principal Component Analysis Principal Component Analysis     v 1 σ 1 . ... • A c ≈ U k Σ k V T . k = [ u 1 , . . . , u k ]     .     v k σ k • A c ≈ U k B = [ b 1 , . . . , b m ] • B = U T k A c • B = U T k [ A − µ ( A ) 1 T n ] (PCA) • B is k × n and captures most of the variance in A • See notes for a statistical interpretation (optional) • Reconstruct approximate original data: A = A c + µ ( A ) 1 T n • A ≈ U k B + µ ( A ) 1 T n COMPSCI 527 — Computer Vision The Singular Value Decomposition 18 / 21

  19. Principal Component Analysis PCA Example Image compression: Each column viewed as a data point 10 5 10 4 10 3 10 2 10 1 10 0 0 100 200 300 400 500 600 700 m × n = 685 × 1024 original Singular Values k = 10 dimensions k = 50 dimensions COMPSCI 527 — Computer Vision The Singular Value Decomposition 19 / 21

  20. Principal Component Analysis Encoding/Decoding New Points • Given PCA parameters µ ( A ) , U k for an m × n matrix A , the compressed points are B = U T k [ A − µ ( A ) 1 T n ] (a k × n matrix with k ≪ m ) • The original points can be approximately reconstructed as A ≈ U k B + µ ( A ) 1 T n • Given a new point a ∈ R m , it can be encoded as b = U T k [ a − µ ( A )] (without incorporating a into the PCA) ( b is a short, k -dimensional vector) • The original a can be approximately reconstructed as a ≈ U k b + µ ( A ) • The parameters µ ( A ) , U k are a code , used for encoding and approximate decoding (compression/decompression) COMPSCI 527 — Computer Vision The Singular Value Decomposition 20 / 21

  21. Principal Component Analysis PCA is Not the Final Answer + + + + + + + + + _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ COMPSCI 527 — Computer Vision The Singular Value Decomposition 21 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend