singular value decomposition matrix factorization
play

Singular Value Decomposition (matrix factorization) Singular Value - PowerPoint PPT Presentation

Singular Value Decomposition (matrix factorization) Singular Value Decomposition The SVD is a factorization of a matrix into = where is a orthogonal matrix, is a orthogonal


  1. Singular Value Decomposition (matrix factorization)

  2. Singular Value Decomposition The SVD is a factorization of a ๐‘›ร—๐‘œ matrix into ๐‘ฉ = ๐‘ฝ ๐šป ๐‘พ ๐‘ผ where ๐‘ฝ is a ๐‘›ร—๐‘› orthogonal matrix, ๐‘พ ๐‘ผ is a ๐‘œร—๐‘œ orthogonal matrix and ๐šป is a ๐‘›ร—๐‘œ diagonal matrix. For a square matrix ( ๐’ = ๐’): ๐œ & โ‰ฅ ๐œ ) โ‰ฅ ๐œ * โ€ฆ ( ๐œ & โ‹ฎ โ€ฆ โ‹ฎ โ€ฆ ๐ฐ & โ€ฆ ๐‘ฉ = ๐’— & โ€ฆ ๐’— ' โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ ( โ‹ฎ โ€ฆ โ‹ฎ โ€ฆ ๐ฐ ' โ€ฆ ๐œ ' ( ๐œ & โ‹ฎ โ€ฆ โ‹ฎ โ‹ฎ โ€ฆ โ‹ฎ ๐‘ฉ = ๐’— & โ€ฆ ๐’— ' ๐’˜ & โ€ฆ ๐’˜ ' โ‹ฑ โ‹ฎ โ€ฆ โ‹ฎ โ‹ฎ โ€ฆ โ‹ฎ ๐œ '

  3. Reduced SVD What happens when ๐‘ฉ is not a square matrix? 1) ๐’ > ๐’ ๐œ " โ‹ฑ % โ‹ฎ โ€ฆ โ‹ฎ โ€ฆ โ‹ฎ โ€ฆ ๐ฐ " โ€ฆ ๐œ # ๐‘ฉ = ๐‘ฝ ๐šป ๐‘พ ๐‘ผ = ๐’— " โ€ฆ ๐’— # โ€ฆ ๐’— $ โ‹ฎ โ‹ฎ โ‹ฎ 0 % โ‹ฎ โ€ฆ โ‹ฎ โ€ฆ โ‹ฎ โ€ฆ ๐ฐ # โ€ฆ โ‹ฎ 0 ๐‘œร—๐‘œ ๐‘›ร—๐‘› ๐‘›ร—๐‘œ We can instead re-write the above as: ๐‘ฉ = ๐‘ฝ ๐‘บ ๐šป ๐‘บ ๐‘พ ๐‘ผ Where ๐‘ฝ ๐‘บ is a ๐‘›ร—๐‘œ matrix and ๐šป ๐‘บ is a ๐‘œร—๐‘œ matrix

  4. Reduced SVD 2) ๐’ > ๐’ % โ€ฆ ๐ฐ " โ€ฆ ๐œ & 0 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ€ฆ โ‹ฎ ๐‘ฉ = ๐‘ฝ ๐šป ๐‘พ ๐‘ผ = % โ‹ฑ โ‹ฑ โ€ฆ ๐ฐ $ โ€ฆ ๐’— " โ€ฆ ๐’— # ๐œ . 0 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ€ฆ โ‹ฎ % โ€ฆ ๐ฐ # โ€ฆ ๐‘›ร—๐‘› ๐‘›ร—๐‘œ ๐‘œร—๐‘œ We can instead re-write the above as: ๐‘ผ ๐‘ฉ = ๐‘ฝ ๐šป ๐‘บ ๐‘พ ๐‘บ where ๐‘พ ๐‘บ is a ๐‘œร—๐‘› matrix and ๐šป ๐‘บ is a ๐‘›ร—๐‘› matrix In general: ๐‘ฝ ๐‘บ is a ๐‘›ร—๐‘™ matrix ๐‘ผ ๐‘ฉ = ๐‘ฝ ๐‘บ ๐šป ๐‘บ ๐‘พ ๐‘บ ๐‘™ = min(๐‘›, ๐‘œ) ๐šป ๐‘บ is a ๐‘™ ร—๐‘™ matrix ๐‘พ ๐‘บ is a ๐‘œร—๐‘™ matrix

  5. Letโ€™s take a look at the product ๐šป ๐‘ผ ๐šป, where ๐šป has the singular values of a ๐‘ฉ , a ๐‘›ร—๐‘œ matrix. ๐œ " โ‹ฑ ๐œ "$ ๐œ " 0 ๐œ # ๐šป ๐‘ผ ๐šป = = โ‹ฑ โ‹ฑ โ‹ฑ 0 ๐œ #$ ๐œ # 0 โ‹ฎ 0 ๐‘› > ๐‘œ ๐‘œร—๐‘œ ๐‘œร—๐‘› ๐‘›ร—๐‘œ ๐œ "$ ๐œ " 0 โ‹ฑ โ‹ฑ โ‹ฑ ๐œ " 0 ๐œ %$ ๐œ % 0 ๐šป ๐‘ผ ๐šป = = โ‹ฑ โ‹ฑ 0 0 0 ๐œ % 0 โ‹ฎ โ‹ฑ โ‹ฑ 0 0 0 ๐‘›ร—๐‘œ ๐‘œ > ๐‘› ๐‘œร—๐‘› ๐‘œร—๐‘œ

  6. Assume ๐‘ฉ with the singular value decomposition ๐‘ฉ = ๐‘ฝ ๐šป ๐‘พ ๐‘ผ . Letโ€™s take a look at the eigenpairs corresponding to ๐‘ฉ ๐‘ผ ๐‘ฉ: ๐‘ฉ ๐‘ผ ๐‘ฉ = ๐‘ฝ ๐šป ๐‘พ ๐‘ผ ๐‘ผ ๐‘ฝ ๐šป ๐‘พ ๐‘ผ ๐‘พ ๐‘ผ ๐‘ผ ๐šป ๐‘ผ ๐‘ฝ ๐‘ผ ๐‘ฝ ๐šป ๐‘พ ๐‘ผ = ๐‘พ๐šป ๐‘ผ ๐‘ฝ ๐‘ผ ๐‘ฝ ๐šป ๐‘พ ๐‘ผ = ๐‘พ ๐šป ๐‘ผ ๐šป ๐‘พ ๐‘ผ Hence ๐‘ฉ ๐‘ผ ๐‘ฉ = ๐‘พ ๐šป ๐Ÿ‘ ๐‘พ ๐‘ผ Recall that columns of ๐‘พ are all linear independent (orthogonal matrix), then from diagonalization ( ๐‘ช = ๐’€๐‘ฌ๐’€ 1๐Ÿ ), we get: โ€ข the columns of ๐‘พ are the eigenvectors of the matrix ๐‘ฉ ๐‘ผ ๐‘ฉ โ€ข The diagonal entries of ๐šป ๐Ÿ‘ are the eigenvalues of ๐‘ฉ ๐‘ผ ๐‘ฉ Letโ€™s call ๐œ‡ the eigenvalues of ๐‘ฉ ๐‘ผ ๐‘ฉ, then ๐œ 3) = ๐œ‡ 3

  7. In a similar way, ๐‘ฝ ๐šป ๐‘พ ๐‘ผ ๐‘ผ ๐‘ฉ๐‘ฉ ๐‘ผ = ๐‘ฝ ๐šป ๐‘พ ๐‘ผ ๐‘พ ๐‘ผ ๐‘ผ ๐šป ๐‘ผ ๐‘ฝ ๐‘ผ = ๐‘ฝ ๐šป ๐‘พ ๐‘ผ ๐‘พ๐šป ๐‘ผ ๐‘ฝ ๐‘ผ = ๐‘ฝ๐šป ๐šป ๐‘ผ ๐‘ฝ ๐‘ผ ๐‘ฝ ๐šป ๐‘พ ๐‘ผ Hence ๐‘ฉ๐‘ฉ ๐‘ผ = ๐‘ฝ ๐šป ๐Ÿ‘ ๐‘ฝ ๐‘ผ Recall that columns of ๐‘ฝ are all linear independent (orthogonal matrices), then from diagonalization ( ๐‘ช = ๐’€๐‘ฌ๐’€ 1๐Ÿ ), we get: โ€ข The columns of ๐‘ฝ are the eigenvectors of the matrix ๐‘ฉ๐‘ฉ ๐‘ผ

  8. How can we compute an SVD of a matrix A ? 1. Evaluate the ๐‘œ eigenvectors ๐ฐ 3 and eigenvalues ๐œ‡ 3 of ๐‘ฉ ๐‘ผ ๐‘ฉ 2. Make a matrix ๐‘พ from the normalized vectors ๐ฐ 3 . The columns are called โ€œright singular vectorsโ€. โ‹ฎ โ€ฆ โ‹ฎ ๐‘พ = ๐ฐ & โ€ฆ ๐ฐ ' โ‹ฎ โ€ฆ โ‹ฎ 3. Make a diagonal matrix from the square roots of the eigenvalues. ๐œ & ๐šป = ๐œ 3 = ๐œ‡ 3 and ๐œ & โ‰ฅ ๐œ ) โ‰ฅ ๐œ * โ€ฆ โ‹ฑ ๐œ ' 4. Find ๐‘ฝ: ๐‘ฉ = ๐‘ฝ ๐šป ๐‘พ ๐‘ผ โŸน ๐‘ฝ ๐šป = ๐‘ฉ ๐‘พ โŸน ๐‘ฝ = ๐‘ฉ ๐‘พ ๐šป 1๐Ÿ . The columns are called the โ€œleft singular vectorsโ€.

  9. True or False? ๐‘ฉ has the singular value decomposition ๐‘ฉ = ๐‘ฝ ๐šป ๐‘พ ๐‘ผ . โ€ข The matrices ๐‘ฝ and ๐‘พ are not singular โ€ข The matrix ๐šป can have zero diagonal entries ๐‘ฝ ) = 1 โ€ข โ€ข The SVD exists when the matrix ๐‘ฉ is singular โ€ข The algorithm to evaluate SVD will fail when taking the square root of a negative eigenvalue

  10. Singular values are always non-negative Singular values cannot be negative since ๐‘ฉ ๐‘ผ ๐‘ฉ is a positive semi- definite matrix (for real matrices ๐‘ฉ ) โ€ข A matrix is positive definite if ๐’š ๐‘ผ ๐‘ช๐’š > ๐Ÿ for โˆ€๐’š โ‰  ๐Ÿ โ€ข A matrix is positive semi-definite if ๐’š ๐‘ผ ๐‘ช๐’š โ‰ฅ ๐Ÿ for โˆ€๐’š โ‰  ๐Ÿ โ€ข What do we know about the matrix ๐‘ฉ ๐‘ผ ๐‘ฉ ? ๐’š ๐‘ผ ๐‘ฉ ๐‘ผ ๐‘ฉ ๐’š = (๐‘ฉ๐’š) ๐‘ผ ๐‘ฉ๐’š = ๐Ÿ‘ โ‰ฅ 0 ๐‘ฉ๐’š ๐Ÿ‘ โ€ข Hence we know that ๐‘ฉ ๐‘ผ ๐‘ฉ is a positive semi-definite matrix โ€ข A positive semi-definite matrix has non-negative eigenvalues ๐‘ช๐’š = ๐œ‡๐’š โŸน ๐’š ๐‘ผ ๐‘ช๐’š = ๐’š ๐‘ผ ๐œ‡ ๐’š = ๐œ‡ ๐’š ๐Ÿ‘ ๐Ÿ‘ โ‰ฅ 0 โŸน ๐œ‡ โ‰ฅ 0

  11. Cost of SVD The cost of an SVD is proportional to ๐’ ๐’ ๐Ÿ‘ + ๐’ ๐Ÿ’ where the constant of proportionality constant ranging from 4 to 10 (or more) depending on the algorithm. ๐ท 456 = ๐›ฝ ๐‘› ๐‘œ ) + ๐‘œ * = ๐‘ƒ ๐‘œ * ๐ท .78.78 = ๐‘œ * = ๐‘ƒ ๐‘œ * ๐ท 9: = 2๐‘œ * /3 = ๐‘ƒ ๐‘œ *

  12. SVD summary: โ€ข The SVD is a factorization of a ๐‘›ร—๐‘œ matrix into ๐‘ฉ = ๐‘ฝ ๐šป ๐‘พ ๐‘ผ where ๐‘ฝ is a ๐‘›ร—๐‘› orthogonal matrix, ๐‘พ ๐‘ผ is a ๐‘œร—๐‘œ orthogonal matrix and ๐šป is a ๐‘›ร—๐‘œ diagonal matrix. ๐‘ผ , where ๐‘ฝ ๐‘บ is a ๐‘›ร—๐‘™ matrix, ๐šป ๐‘บ is a ๐‘™ ร—๐‘™ matrix, โ€ข In reduced form: ๐‘ฉ = ๐‘ฝ ๐‘บ ๐šป ๐‘บ ๐‘พ ๐‘บ and ๐‘พ ๐‘บ is a ๐‘œร—๐‘™ matrix, and ๐‘™ = min(๐‘›, ๐‘œ) . โ€ข The columns of ๐‘พ are the eigenvectors of the matrix ๐‘ฉ ๐‘ผ ๐‘ฉ , denoted the right singular vectors. The columns of ๐‘ฝ are the eigenvectors of the matrix ๐‘ฉ๐‘ฉ ๐‘ผ , denoted the left singular โ€ข vectors. โ€ข The diagonal entries of ๐šป ๐Ÿ‘ are the eigenvalues of ๐‘ฉ ๐‘ผ ๐‘ฉ. ๐œ & = ๐œ‡ & are called the singular values. โ€ข The singular values are always non-negative (since ๐‘ฉ ๐‘ผ ๐‘ฉ is a positive semi-definite matrix, the eigenvalues are always ๐œ‡ โ‰ฅ 0 )

  13. Singular Value Decomposition (applications)

  14. 1) Determining the rank of a matrix Suppose ๐‘ฉ is a ๐‘›ร—๐‘œ rectangular matrix where ๐‘› > ๐‘œ : ๐œ " โ‹ฑ ( โ‹ฎ โ€ฆ โ‹ฎ โ€ฆ โ‹ฎ โ€ฆ ๐ฐ " โ€ฆ ๐œ ' ๐‘ฉ = ๐’— " โ€ฆ ๐’— ' โ€ฆ ๐’— # โ‹ฎ โ‹ฎ โ‹ฎ 0 ( โ‹ฎ โ€ฆ โ‹ฎ โ€ฆ โ‹ฎ โ€ฆ ๐ฐ ' โ€ฆ โ‹ฎ 0 ( โ‹ฎ โ€ฆ โ‹ฎ โ€ฆ ๐œ " ๐ฐ " โ€ฆ ( + ๐œ ) ๐’— ) ๐ฐ ) ( + โ‹ฏ + ๐œ ' ๐’— ' ๐ฐ ' ( ๐‘ฉ = = ๐œ " ๐’— " ๐ฐ " ๐’— " โ€ฆ ๐’— ' โ‹ฎ โ‹ฎ โ‹ฎ ( โ‹ฎ โ€ฆ โ‹ฎ โ€ฆ ๐œ ' ๐ฐ ' โ€ฆ $ % ๐‘ฉ = = ๐œ ! ๐’— ! ๐ฐ ! !"# % what is rank ๐‘ฉ # = ? ๐‘ฉ # = ๐œ # ๐’— # ๐ฐ # A) 1 B) n C) depends on the matrix In general, rank ๐‘ฉ & = ๐‘™ D) NOTA

  15. Rank of a matrix For general rectangular matrix ๐‘ฉ with dimensions ๐‘›ร—๐‘œ , the reduced SVD is: ๐‘ผ ๐‘ฉ = ๐‘ฝ ๐‘บ ๐šป ๐‘บ ๐‘พ ๐‘บ ๐‘™ = min(๐‘›, ๐‘œ) H ๐‘™ ร—๐‘œ ๐‘›ร—๐‘œ ๐‘›ร—๐‘™ ( ๐‘ฉ = I ๐œ 3 ๐’— 3 ๐ฐ 3 ๐‘™ร—๐‘™ 3G& ๐œ # ๐œ # โ‹ฑ 0 ๐œ & ๐œฏ = โ‹ฑ โ‹ฑ ๐œฏ = ๐œ & 0 โ€ฆ 0 0 0 โ‹ฑ โ‹ฎ 0 If ๐œ & โ‰  0 โˆ€๐‘— , then rank ๐‘ฉ = ๐‘™ (Full rank matrix) In general, rank ๐‘ฉ = ๐’” , where ๐’” is the number of non-zero singular values ๐œ & ๐‘  < ๐‘™ (Rank deficient)

  16. Rank of a matrix โ€ข The rank of A equals the number of non-zero singular values which is the same as the number of non-zero diagonal elements in ฮฃ . โ€ข Rounding errors may lead to small but non-zero singular values in a rank deficient matrix, hence the rank of a matrix determined by the number of non-zero singular values is sometimes called โ€œeffective rankโ€. โ€ข The right-singular vectors (columns of ๐‘พ ) corresponding to vanishing singular values span the null space of A . โ€ข The left-singular vectors (columns of ๐‘ฝ ) corresponding to the non-zero singular values of A span the range of A .

  17. 2) Pseudo-inverse โ€ข Problem: if A is rank-deficient, ๐šป is not be invertible โ€ข How to fix it: Define the Pseudo Inverse โ€ข Pseudo-Inverse of a diagonal matrix : & O & , if ๐œ 3 โ‰  0 ๐šป N 3 = N 0, if ๐œ 3 = 0 โ€ข Pseudo-Inverse of a matrix ๐‘ฉ : ๐‘ฉ N = ๐‘พ๐šป N ๐‘ฝ ๐‘ผ

  18. 3) Matrix norms The Euclidean norm of an orthogonal matrix is equal to 1 ๐‘ฝ๐’š ๐‘ผ (๐‘ฝ๐’š) = max ๐’š ๐‘ผ ๐’š = max ๐‘ฝ ) = max ๐’š ! +" ๐‘ฝ๐’š ) = max ๐’š ! +" ๐’š ) = 1 ๐’š ! +" ๐’š ! +" The Euclidean norm of a matrix is given by the largest singular value ๐’š ! +" ๐‘ฝ ๐šป ๐‘พ ๐‘ผ ๐’š ) = max ๐’š ! +" ๐šป ๐‘พ ๐‘ผ ๐’š ) = ๐‘ฉ ) = max ๐’š ! +" ๐‘ฉ๐’š ) = max ๐‘พ ๐‘ผ ๐’š ! +" ๐šป ๐‘พ ๐‘ผ ๐’š ) = max = max ๐’› ! +" ๐šป ๐’› ) = max(๐œ & ) Where we used the fact that ๐‘ฝ ) = 1 , ๐‘พ ) = 1 and ๐šป is diagonal ๐‘ฉ ) = max ๐œ & = ๐œ #./ ๐œ '() is the largest singular value

  19. 4) Norm for the inverse of a matrix The Euclidean norm of the inverse of a square-matrix is given by: Assume here ๐‘ฉ is full rank, so that ๐‘ฉ 1& exists ๐‘ฉ 0" ) = max ๐’š ! +" (๐‘ฝ ๐šป ๐‘พ ๐‘ผ ) 0" ๐’š ) = max ๐’š ! +" ๐‘พ ๐šป 0๐Ÿ ๐‘ฝ ๐‘ผ ๐’š ) Since ๐‘ฝ ) = 1 , ๐‘พ ) = 1 and ๐šป is diagonal then " ๐‘ฉ 0" ) = ๐œ '!$ is the smallest singular value 2 #$%

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend