control of the cylinder wake in the laminar regime by
play

Control of the cylinder wake in the laminar regime by Trust-Region - PowerPoint PPT Presentation

Control of the cylinder wake in the laminar regime by Trust-Region Proper Orthogonal Decomposition. Laurent CORDIER Michel BERGMANN & Jean-Pierre BRANCHER Laurent.Cordier@ensem.inpl-nancy.fr Laboratoire d Energ etique et de M


  1. Control of the cylinder wake in the laminar regime by Trust-Region Proper Orthogonal Decomposition. Laurent CORDIER Michel BERGMANN & Jean-Pierre BRANCHER Laurent.Cordier@ensem.inpl-nancy.fr Laboratoire d’ ´ Energ´ etique et de M´ ecanique Th´ eorique et Appliqu´ ee UMR 7563 (CNRS - INPL - UHP) ENSEM - 2, avenue de la Forˆ et de Haye BP 160 - 54504 Vandoeuvre Cedex, France Control of the cylinder wake in the laminar regime by Trust-Region Proper Orthogonal Decomposition. – p.1/20

  2. Introduction Configuration and numerical method Two dimensional flow around a circular cylinder at Re = 200 Viscous, incompressible and Newtonian fluid Cylinder oscillation with a tangential sinusoidal velocity γ ( t ) γ ( t ) = V T U ∞ = A sin(2 πSt f t ) Γ sup � ∂u � Z T Z 2 π Z T Z 2 π y Ω Γ e V T ( t ) θ ��� ��� Γ s ��� ��� 0 U ∞ x Γ c D Γ inf Find the control parameters c = ( A, St f ) T such that the mean drag coefficient is minimized � C D � T = 1 2 p n x R dθ dt − 1 2 ∂x n x + ∂u ∂y n y R dθ dt, T T Re 0 0 0 0 Control of the cylinder wake in the laminar regime by Trust-Region Proper Orthogonal Decomposition. – p.2/20

  3. Introduction Parametric study 1.3928 6 3.6306 1.0320 5 1.3878 0.9929 4 6.9876 Amplitude � � 3 1.3928 1.1728 1.0529 2 2.5516 1.3905 1.3878 1 1.3526 1.2327 0 0 0.2 0.4 0.6 0.8 1 Strouhal Variation of the mean drag coefficient with A and St f . Numerical minimum = (4 . 3 , 0 . 74) . A min , St f min Control of the cylinder wake in the laminar regime by Trust-Region Proper Orthogonal Decomposition. – p.3/20

  4. Introduction Mean drag coefficient & steady unstable base flow 2.5 Natural flow 2.25 Base flow 2 1.75 � C D � T � C D � T 1.5 1.25 C 0 D 1 C base D 0.75 25 50 75 100 125 150 175 200 Re Fig. : Variation with the Reynolds number of the mean drag coefficient. Contributions and corresponding flow patterns of the base flow and unsteady flow. Protas, B. et Wesfreid, J.E. (2002) : Drag force in the open-loop control of the cylinder wake in the laminar regime. Phys. Fluids , 14 (2), pp. 810-826. Control of the cylinder wake in the laminar regime by Trust-Region Proper Orthogonal Decomposition. – p.4/20

  5. Reduced Order Model (ROM) and optimization problems Initialization Recourse to detailed model (TRPOD) High−fidelity model f(x), grad f(x) a(x), grad a(x) Approximation model Optimization ∆ x Optimization on simplified model Control of the cylinder wake in the laminar regime by Trust-Region Proper Orthogonal Decomposition. – p.5/20

  6. ROM Proper Orthogonal Decomposition (POD) ◮ Introduced in turbulence by Lumley (1967). ◮ Method of information compression Z Φ 2 ◮ Look for a realization Φ ( X ) which is clo- ser, in an average sense, to realizations u ( X ) . Coordinate axis Φ 1 ( X = ( x , t ) ∈ D = Ω × R + ) ◮ Φ ( X ) solution of the problem : � Φ � 2 = 1 . �| ( u , Φ ) | 2 � max s.t. Φ Original point cloud ◮ Snapshots method, Sirovich (1987) : Coordinate axis C ( t, t ′ ) a ( n ) ( t ′ ) dt ′ = λ ( n ) a ( n ) ( t ) . Point cloud, mean shifted (centered around origin) T ◮ Optimal convergence in L 2 norm (energy)of Φ ( X ) ⇒ Dynamical order reduction is possible. Control of the cylinder wake in the laminar regime by Trust-Region Proper Orthogonal Decomposition. – p.6/20

  7. ROM Parameter sampling in an optimization setting General configuration. Ideal sampling. Unsuitable sampling. Unsuitable sampling. Discussion of parameter sampling in an optimization setting (from Gunzburger, 2004). − path to optimizer using full system, � initial values, � optimal values, and • − − − parameter values used for snapshot generation. Control of the cylinder wake in the laminar regime by Trust-Region Proper Orthogonal Decomposition. – p.7/20

  8. ROM Non-equilibrium modes (Noack et al. 2004) ◮ Necessity for a given reference flow to introduce new modes : either new operating conditions or shift-modes Dynamics I φ I 2 ���������� ���������� ���������� ���������� φ I ���������� ���������� 1 ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� Dynamics II ���������� ���������� φ I φ I → II 0 φ II neq 2 φ II ����������� ����������� 1 ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� 0 ����������� ����������� ����������� ����������� φ II ����������� ����������� ����������� ����������� 0 ����������� ����������� ����������� ����������� ����������� ����������� Controlled space Fig. : Schematic representation of a dynamical transition with a non-equilibrium mode Control of the cylinder wake in the laminar regime by Trust-Region Proper Orthogonal Decomposition. – p.8/20

  9. X X | {z } | {z } | {z } ROM A robust POD surrogate for the drag coefficient ◮ POD approximations consistent with our approach : N N + M U ( x , t ) = ( u, v, p ) T = a i ( t ) φ i ( x ) + a i ( t ) φ i ( x ) + γ ( c , t ) U c ( x ) i =0 i = N +1 control function Galerkin modes non-equilibrium modes Physical aspects Dynamical aspects Modes actuation mode predetermined dynamics U c a 0 = 1 mean flow mode U m , i = 0 i = 1 Galerkin modes i = 2 POD ROM Dynamics of the reference · · · Temporal dynamics of the flow I i = N modes (eventually, the mode i = 0 is solved then non-equilibrium modes i = N + 1 a 0 ≡ a 0 ( t ) ) Inclusion of new operating · · · conditions II, III, IV, · · · i = N + M Control of the cylinder wake in the laminar regime by Trust-Region Proper Orthogonal Decomposition. – p.9/20

  10. � � � � ROM Galerkin projection X X X ◮ Galerkin projection of NSE onto the POD basis : ! X φ i , ∂ u φ i , − ∇ p + 1 ∂t + ∇ · ( u ⊗ u ) = Re ∆ u . ◮ Reduced order dynamical system where only ( N + M + 1) ( ≪ N P OD ) modes are retained (state equations) : N + M N + M N + M d a i ( t ) = B ij a j ( t ) + C ijk a j ( t ) a k ( t ) d t j =0 j =0 k =0 N + M + D i d γ γ ( c , t ) + G i γ 2 ( c , t ) , d t + E i + F ij a j ( t ) j =0 a i (0) = ( U ( x , 0) , φ i ( x )) . B ij , C ijk , D i , E i , F ij and G i depend on φ i , U c and Re . Control of the cylinder wake in the laminar regime by Trust-Region Proper Orthogonal Decomposition. – p.10/20

  11. Z 2 π � � Surrogate drag function and model objective function X X f ◮ Drag operator : | {z } | {z } C D : R 3 → R (1) u 3 n x − 1 ∂u 1 ∂x n x − 1 ∂u 1 u �→ 2 ∂y n y R dθ, Re Re 0 ! Z T X f ◮ Surrogate drag function : N + M N C D ( t ) = a 0 ( t ) N 0 + a i ( t ) N i + a i ( t ) N i with N i = C D ( φ i ) . i = N +1 i =1 fluctuations C ′ evolution of the mean drag D ( t ) ◮ Model objective function : N + M C D ( t ) � T = 1 m = � a 0 ( t ) N 0 + a i ( t ) N i dt. T 0 i = N +1 Control of the cylinder wake in the laminar regime by Trust-Region Proper Orthogonal Decomposition. – p.11/20

  12. f Surrogate drag function Test case A = 2 and St = 0 . 5 ◮ Comparison of real drag coefficient C D (symbols) and model function C D (lines) at the design parameters. 1.1 1.095 1.09 1.085 1.08 C D f 1.075 C D & 1.07 1.065 1.06 1.055 1.05 1.045 0 5 10 15 t Control of the cylinder wake in the laminar regime by Trust-Region Proper Orthogonal Decomposition. – p.12/20

  13. Robustness of the model objective function Test case A = 2 and St = 0 . 5 2.5 2.5 1.293 1.221 1.275 1.209 1.257 1.197 1.239 1.185 1.221 1.173 1.203 1.161 1.185 1.149 A A 2 2 1.167 1.137 1.149 1.125 1.131 1.113 1.113 1.101 1.095 1.089 1.077 1.077 1.059 1.065 1.041 1.053 1.5 1.5 0.4 0.5 0.6 0.4 0.5 0.6 St St (a) Real objective function J (b) Model objective function m Fig. : Comparison of the real and the model objective functions associated to the mean drag coefficient. Control of the cylinder wake in the laminar regime by Trust-Region Proper Orthogonal Decomposition. – p.13/20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend