propagation of chaos for interacting particles subject to
play

Propagation of chaos for interacting particles subject to - PowerPoint PPT Presentation

Propagation of chaos for interacting particles subject to environmental noise Michele Coghi 23/10/2014 Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 1 / 24 Introduction 1 The model 2 Existence


  1. Propagation of chaos for interacting particles subject to environmental noise Michele Coghi 23/10/2014 Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 1 / 24

  2. Introduction 1 The model 2 Existence and limit theorem 3 Propagation of Chaos 4 Summary 5 Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 2 / 24

  3. Part I Introduction Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 3 / 24

  4. Filtered pobability space, (Ω , F , ( F t ) t ≥ 0 , P ) . Interacting particle system � � � � � � N dX i , N X i , N − X j , N dt + � ∞ X i , N = 1 ◦ dW k j = 1 K k = 1 σ k t t t t t N i = 1 , ..., N Empirical Measure N t = 1 � S N δ X i , N → µ t N t i = 1 Limit Equation d µ t + div ( b µ t µ t ) d t + � ∞ k = 1 div ( σ k ( x ) µ t ) ◦ d W k � t = 0 b µ t = K ∗ µ t Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 4 / 24

  5. Independent noise [Sznitman] N = 1 � � − X j , N d X i , N � X i , N d t + d W i K i = 1 , ..., N t t t t N j = 1 ∂ t µ t + div ( b µ t µ t ) − 1 2 ∆ µ t = 0 Deterministic model [Dobrushin] N d = 1 � � d t X i , N � X i , N − X j , N K i = 1 , ..., N t t t N j = 1 ∂ t µ t + div ( b µ t µ t ) = 0 Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 5 / 24

  6. Part II The Model Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 6 / 24

  7. Lipschitz continuity of coefficients K , σ k : R d → R d , k ∈ N | K ( x ) − K ( y ) | ≤ L K | x − y | ∞ | σ k ( x ) − σ k ( y ) | 2 ≤ L σ | x − y | 2 � k = 1 Covariance k = 1 | σ k ( x ) | 2 < ∞ , � ∞ Q : R d × R d → R d × d Q ij ( x , y ) = � ∞ k ( x ) σ j k = 1 σ i k ( y ) . Q : R d → R d × d Q ( x , y ) = Q ( x − y ) Q ( 0 ) = Id . Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 7 / 24

  8. From Stratonovich to Ito, � t � t � t ∞ s + 1 � � � � � � X i , N ◦ dB k X i , N dB k � X i , N σ k s = σ k ( D σ k · σ k ) ds s s s 2 0 0 0 k = 1 where ( D σ k · σ k ) i ( x ) = � d j = 1 σ j k ( x ) ∂ j σ i k ( x ) . Further assume div σ k = 0 for each k ∈ N Along with the previous assumptions on Q , it implies d ∞ � � σ j k ( x ) ∂ j σ i 0 = k ( x ) . k = 1 j = 1 Stratonovich and Itô formulations coincide. Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 8 / 24

  9. SDE - Itô formulation N ∞ = 1 � � � � dX i , N � X i , N − X j , N � X i , N dB k K dt + σ k t t t t t N j = 1 k = 1 i = 1 , ..., N . SPDE - Itô formulation ∞ t = 1 � div ( σ k ( x ) µ t ) dB k d µ t + div ( b µ t µ t ) dt + 2 ∆ µ t . k = 1 Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 9 / 24

  10. � � � � P 1 ( R d ) = probability on R d R d | x | d µ ( x ) < + ∞ µ � � � µ, ν ∈ P 1 ( R d ) W 1 ( ν, µ ) = R 2 d | x − y | m ( d x , d y ) , inf m ∈ Γ( µ,ν ) m ∈ Γ( µ, ν ) iff, Γ( µ, ν ) = { m ∈ P 1 ( R 2 d ) : m ( A × R d ) = µ ( A ) , m ( R d × A ) = ν ( A ) , ∀ A ∈ B ( R d ) } Remark The metric space ( P 1 ( R d ) , W 1 ) is complete and separable. Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 10 / 24

  11. X ∞ space of the stochastic processes, µ : [ 0 , T ] × Ω → P 1 ( R d ) such that � � � sup R d | x | d µ t ( x ) < + ∞ E t ∈ [ 0 , T ] � � d ∞ ( µ, ν ) := E sup t ∈ [ 0 , T ] W 1 ( µ t , ν t ) Remark It follows by the completeness of ( P 1 ( R d ) , W 1 ) that ( X ∞ , d ∞ ) is a complete metric space. Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 11 / 24

  12. Initial Condition Concerning the initial condition µ 0 : Ω → P 1 ( R d ) of the SPDE we shall always assume that i) µ 0 is F 0 -measurable; �� � ii) E R d | x | d µ 0 ( x ) < ∞ . Definition µ ∈ X ∞ is a solution of the SPDE with initial condition µ 0 if, for all φ ∈ C 2 R d � � , b b ( R d ) � µ t , φ � is F t -adapted for every test function φ ∈ C ∞ weak formulation � t � t � µ s , b µ s · ∇ φ � ds + 1 � µ t , φ � = � µ 0 , φ � + � µ s , ∆ φ � ds 2 0 0 � t ∞ � � µ s , σ k · ∇ φ � dB k + s . 0 k = 1 Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 12 / 24

  13. Part III Existence and limit Theorem Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 13 / 24

  14. Theorem Given T ≥ 0 and µ 0 : Ω → P 1 ( R d ) , there exists a solution µ = ( µ t ) t ∈ [ 0 , T ] of the SPDE starting from µ 0 and defined up to time T. Moreover, if µ N 0 → µ 0 , as N → ∞ , then µ N → µ, as N → ∞ , in the metric d ∞ . Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 14 / 24

  15. Linear SPDE ∞ t = 1 � div ( σ k ( x ) µ t ) dB k d µ t + div ( b µ t ) dt + 2 ∆ µ t . k = 1 b = b ( x , t , ω ) , F t -adapted process, continuous in t , Lipschitz continuous in x . � d X t = b ( t , X t ) d t + � ∞ k σ k ( X t ) d B k t = x ∈ R d X 0 Proposition Given µ 0 , the push forward µ t ( ω ) = X ( t , ., ω ) # µ 0 ( ω ) is in X ∞ and solves the linear SPDE. Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 15 / 24

  16. Given µ = ( µ t ) t ∈ [ 0 , T ] ∈ X ∞ , � b µ ( t , x , ω ) := R d K ( x − y ) µ t ( ω, d y ) . t ) d B k d X µ = b µ ( X µ t ) d t + � k σ k ( X µ t t X µ = x 0 Φ µ 0 : X ∞ → X ∞ (Φ µ 0 µ ) t ( ω ) := X µ ( t , ., ω ) # µ 0 ( ω ) ω -a.s. . Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 16 / 24

  17. Theorem The operator Φ µ 0 has a unique fixed point µ = { µ t } in X ∞ , this fixed point is a solution of the SPDE. Φ µ 0 is a contraction, ∀ µ, ν ∈ X ∞ d ∞ (Φ µ 0 µ, Φ µ 0 ν ) ≤ γ T d ∞ ( µ, ν ) Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 17 / 24

  18. Let ω ∈ Ω and t ∈ [ 0 , T ] be fixed. m = ( X µ ( t , ., ω ) , X ν ( t , ., ω )) # µ 0 ∈ Γ((Φ µ 0 µ ) t ( ω ) , (Φ µ 0 ν ) t ( ω )) . Indeed, A ∈ B ( R d ) , m ( A × R d ) = µ 0 { x ∈ R d : X µ t ∈ A } = ( X µ t ) # µ 0 ( A ) = (Φ µ 0 µ ) t ( A ) . In the same way, m ( R d × A ) = (Φ µ 0 ν ) t ( ω )( A ) . From the definition of the Wasserstein metric W 1 , � � � d ∞ (Φ µ 0 µ, Φ µ 0 ν ) ≤ E sup R d | X µ ( t , x ) − X ν ( t , x ) | d µ 0 . t ∈ [ 0 , T ] Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 18 / 24

  19. Given µ = { µ t } t ≥ 0 , ν = { ν t } t ≥ 0 ∈ X ∞ , � � � � � � E sup | X µ ( t , x ) − X ν ( t , x ) | � F 0 ≤ γ T E sup W 1 ( µ t , ν t ) � F 0 � � t ∈ [ 0 , T ] t ∈ [ 0 , T ] By the definition of b µ : � � � � � R d K ( x − y ′ ) d ν t ( y ′ ) � | b µ ( t , x ) − b ν ( t , x ) | = R d K ( x − y ) d µ t ( y ) − � � � � Given ω ∈ Ω a.s. and t ∈ [ 0 , T ] , for every m ∈ Γ( µ t ( ω ) , ν t ( ω )) � � � � � R d × R d K ( x − y ) d m ( y , y ′ ) − R d × R d K ( x − y ′ ) d m ( y , y ′ ) � | b µ ( s , x ) − b ν ( s , x ) | = � � � � � R d × R d | K ( x − y ) − K ( x − y ′ ) | d m ( y , y ′ ) ≤ � R d × R d | y − y ′ | d m ( y , y ′ ) ≤ L K Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 19 / 24

  20. Lemma Let T > 0 . Let µ 0 , ν 0 : Ω → P 1 ( R d ) be two initial conditions, and let µ, ν ∈ X ∞ be the respective solutions of the SPDE given by the contraction method described before, then there exists a constant C T > 0 , such that d ∞ ( µ, ν ) ≤ C T E [ W 1 ( µ 0 , ν 0 )] t ( ω ) = X S N S N ( ., ω ) # S N 0 ( ω ) , t ω -a.s. t Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 20 / 24

  21. Part IV Propagation of Chaos Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 21 / 24

  22. (Ω , F , F t , P ) filtered probability space, ( X i ) i ∈ N , sequence of i.i.d., R d -valued, F 0 -measurable r.v.s, B k t , k ≥ 1, independent Brownian motions, which are independent from the X i , ( F B t ) t ≥ 0 the filtration generated by ( B k t ) k ≥ 1 . � N S N 0 := 1 i = 0 δ X i → µ 0 , in the metric E [ W 1 ( · , · )] , as N → ∞ . N Theorem � R d � Given r ∈ N and φ 1 , ..., φ r ∈ C b , we have r � � � � � � � X 1 , N X r , N � � F B N →∞ E lim φ 1 · . . . · φ r = � µ t , φ i � � t t t i = 1 Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 22 / 24

  23. correlated stochastic particles existence result for a non linear SPDE convergence of the empirical measure S N t to the solution of the SPDE µ t propagation of chaos Propagation of chaos for interacting particles subject to environmental noise 23/10/2014 23 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend