production of hydrogen using titania based photocatalysts
play

Production of Hydrogen Using Titania Based Photocatalysts Tit i B - PowerPoint PPT Presentation

Production of Hydrogen Using Titania Based Photocatalysts Tit i B d Ph t t l t Wonyong Choi School of Environmental Science and Engineering Dept. of Chemical Engineering D f Ch i l E i i Pohang University of Science and Technology


  1. Production of Hydrogen Using Titania Based Photocatalysts Tit i B d Ph t t l t Wonyong Choi School of Environmental Science and Engineering Dept. of Chemical Engineering D f Ch i l E i i Pohang University of Science and Technology (POSTECH) Pohang, KOREA

  2. Solar Energy Based Hydrogen Economy Solar Energy Based Hydrogen Economy

  3. H 2 production CO 2 -producing CO 2 -neutral CO 2 -free H 2 from fossil fuels H 2 from biomass Water splitting Photoelectrolysis Thermo- Thermo- Electrolysis Biological Photocatalysis chemical chemical Oil Oil Coal Coal Natural Natural ( (alkaline, PEM , process process (PEC semiconductor (PEC, semiconductor cycles electrolyzer) process powder/colloid) gas (anaerobic (S-I cycle, etc) (gasification, digestion, pyrolysis, Gasification fermentation) reforming) High-T Steam Solar Nuclear Storage of PV+ PV+ Wind Wind electrolysis electrolysis thermal th l th thermal l electricity l i i reforming/ +EL EL (solar, as H 2 nuclear) water gas shift Proven + CO 2 H 2 technology but costly but costly process + H 2 CO 2 Current Current industrial Ideal solar-to- process hydrogen conversion process but far from commercial i l C Capture & Storage & S realization (CCS)

  4. Solar Energy Solar Energy 1.2 x 10 5 TW 5 (10,000 x Current world demands) • Abundant • Environment-friendly energy source • Safe and Clean f Earth ~ 0.1% of the Earth’s surface (5 times as big as South Korea) Global need + 13 TW 13 TW ~ 10% conversion efficiency 10% i ffi i

  5. Photocatalysis as a mean of solar energy conversion e - A/A - e - H O/H H 2 O/H 2 h ν Δ G 0 (H O Δ G 0 (H 2 O → H 2 + 1/2O 2 ) H + 1/2O ) =56.7 kcal/mol H 2 O/O 2 e - e - D/D + Photocatalyst (usually semiconductors)

  6. Water Splitting on a Photocatalyst Particle 1. Photon absorption 3. Reduction Generation of e - and h + for H 2 evolution with sufficient potentials for with sufficient potentials for 2 Photon H 2 water splitting (Band Engineering) H O H 2 O e - e - h + h + + + 2. Charge Separation and migration to surface x x reaction sites reaction sites H 2 O 4. Oxidation O 2 2 for O 2 evolution

  7. Band Gap Positions in Various Semiconductors eV E vs. NHE Vacuum level 0 -3.0 -1.0 -4.0 1.1 -4.5 H + /H 2 0 3.0 2.3 2.5 -5.0 2 Si +1.0 3.0 2.8 3.4 2.2 3.2 -6.0 3.2 3.2 3.8 GaP GaP +2 0 +2.0 SiC -7.0 CdS +3.0 Fe 2 O 3 -8 0 -8.0 TiO TiO 2 Z O ZnO 2 TiO 2 iO SrTiO 3 Anatase WO 3 Rutile Nb 2 O 5 SnO SnO 2 @ pH 0

  8. Common Strategies for D Developing Visible Light Photocatalysts l i Vi ibl Li ht Ph t t l t 1. Impurity Doping in Wide Band-gap Oxide Semiconductors - transition metal ions (cations) - nitrogen, carbon (anions) 2. Sensitization of Wide Band-gap Oxide Semiconductors - organometallic complexes ( e.g., ruthenium bipyridyl derivatives) - organic dyes organic dyes - inorganic quantum dots ( e.g., CdS) 3 3. Nanohybrid Systems Nanohybrid Systems (metal oxides & chalcogenides, metal nanoparticles, organic & inorganic sensitizers, polymers, etc.)

  9. Dye- Dye -Sensitized TiO Sensitized TiO 2 Solar Cell Solar Cell Schematics of DSSC Performance of DSSC R J sc : short circuit current V oc : open circuit voltage - e - e ff : fill factor Dye* E CB ff = J ( ) (-) J sc × V oc V y (eV) Pt A - A - P max Energy Dye + / 0 Dye + / 0 - e - e A E g (TiO 2 ) Current ≈ 3.2 eV J sc = 18mA/cm 2 J sc - ↔ - + 2e - + 2e - ↔ 3I - ↔ 3I V oc = 0.74V I 3 - + 2e - 3I - - I I 3 E VB 3 3 3 C VB 3 (+ ) (+ ) ff = 73% 0 Semiconductor Solution V oc 0 Voltage

  10. H 2 Production on Dye Production on Dye- -Sensitized TiO Sensitized TiO 2 e - e - + / S S + / S * CB CB H 2 0 Pt Pt + OH - 1/ 2H 1/ 2H 2 + OH 1/ 2H 1/ 2H + OH + OH D/ D + D/ D + / S S + / S / VB VB 2H + + 2e - (1) H 2 ( E 0 = -0.41 V) 2H 2 O O 2 + 4H + + 4e - ( E 0 = + 0.82 V) (2) Δ Δ (3) (3) H O H 2 O H 2 + 1/2O 2 ( H + 1/2O ( G G = 1.23 V) 1 23 V)

  11. Hydrogen Production with Dye-Sensitized TiO 2 Controlling/Modifying Interfacial Properties : • Sensitizer anchoring mode • Ion-exchange resin coating • Barrier layer coating • Hybridization with carbon nanotubes • Non-Ruthenium Dye sensitized systems

  12. Anchoring Group Anchoring Group Different ways of anchoring molecules on surfaces Different ways of anchoring molecules on surfaces

  13. HOOC c-Ru II L 3 COOH COOH 3 HOOC N N N Ru COOH N N 20 c-RuL 3 N mol g -1 ) p-RuL 3 HOOC 15 uL 3 ] ad ( μ m COOH 10 Tris(4,4’-dicarboxy-2,2’-bipyridyl) Ruthenium(II) [Ru 5 5 p-Ru II L 3 N N 0 2 4 6 8 10 12 pH H Ru N N N N pH-dependent adsorption of the Ru-sensitizer on TiO 2 ([TiO 2 ] = 0.5 g/L, [RuL 3 ] = 10 μ M) P O P O OH HO HO OH (B (Bpy) 2 (4,4’-bis(phosphonato)-2,2’-bipyridyl) Ruthenium(II) ) (4 4’ bi ( h h t ) 2 2’ bi id l) R th i (II) Bae et al., J. Phys. Chem. B 2004 , 108, 14903

  14. Anchoring Groups in Ru-Sensitizers Carboxyl OH OH OH OH OH O O O O O OH N N N N N N Ru N O O O N Ru O N O N Ru N N N N N N N N HO OH HO OH O O O O C4 C6 C2 OH OH OH OH O OH OH OH O O Phosphonic p OH O O P P P P P OH OH P P OH N N O N N O N N O O O Ru N N Ru Ru OH N N N N P OH HO P P HO P N HO P N N N N N OH OH OH OH OH OH O P P O OH OH OH OH P2 P4 P6

  15. A Anchoring Group Effect: pH-dependent Hydrogen Production h i G Eff t H d d t H d P d ti on Ru II /Pt-TiO 2 under Visible-light Illumination 30 160 140 25 120 P2 P4 20 100 P6 ol) l) H 2 ( μ mo C2 C2 H 2 ( μ mo 15 C4 80 C6 60 10 40 5 20 0 0 2 2 4 4 6 6 8 8 10 10 2 2 4 4 6 6 8 8 10 10 pH pH [Pt/TiO 2 ] = 0.5 g/L; [RuL x ] i = 10 μ M; [EDTA] = 10 mM; λ > 420 nm 10 μ M; [EDTA] 10 mM; λ [Pt/TiO 2 ] 0.5 g/L; [RuL x ] i 420 nm (Bae and Choi, J. Phys. Chem. B 2006 , 110 , 14792)

  16. TiO 2 Surface Modification w ith Nafion TiO Surface Modification w ith Nafion (CF 2 CF 2 ) x ( 2 ) x (CFCF 2 ) ( 2 ) 2 O O – SO - (CF 2 CFO)CF 2 CF 2 O O – CF 3 – – Monomer unit of nafion – – – Cation-exchanger TiO 2 – Stable against photocatalytic oxidation – – 5.0 nm – – hydrophobic – zone Interface 1.0 nm 4.0 nm Nafion-Coated TiO 2 Particle aqueous zone zone ( H P k ( H. Park and W. Choi, J. Phys. Chem. B d W Ch i J Ph Ch B 2005 , 109 , 11667 ) sulfonic fluorocarbon anion chain

  17. 2+ /Nafion 2+ Ru(dcbpy) Ru(dcbpy) 3 -TiO TiO 2 vs. vs. Ru(bpy) Ru(bpy) 3 Nafion/TiO /TiO 2 OH OH O O Pt Pt H + H + (a) h v e - N N Ru N O O N O Ti N N L 2 'Ru II (bpy) H 2 H 2 HO L 2 Ru (bpy) OH C C Ti O TiO 2 O O O O (b) h v Ru II (dcbpy) 3 [H + ] Nf > [H + ] aq H + - - e - H + 2+ 2+ RuL 3 H + - - - - H 2 H + - - - N N H + RuL 2+ 2 Ru Ru N N RuL 3 H + H + N N H + TiO 2 - - - H + N N Nafion layer Nafion layer Solution TiO 2 Ru II (bpy) 3 2+

  18. Photo-sensitized H 2 Production in tw o anchoring systems tw o anchoring systems 30 20 2+ + TiO 2 Ru(bpy) 3 Ru(dcbpy) + TiO 2 25 25 ex] ads ( μ M) ) 2+ + Nf-TiO 2 Ru(bpy) 3 15 Pt/P25 mol h -1 ) 20 Nf-Pt/P25 [H 2 ] ( μ m 15 15 Ru-comple 10 10 10 5 [R 5 5 0 0 2 3 4 5 6 7 8 2 4 6 8 10 pH pH ( H. Park and W. Choi, Langmuir 2006 , 22 , 2906 )

  19. Photoelectrochemical Hydrogen Production Carbon Nanotube Assisted Generation of Hydrogen in Dye-Sensitized Photoelectrochemical Cell under Visible Light e - e - e - e - (-0.62 V NHE ) (-0.62 V NHE ) dye * /dye + dye * /dye + h v h v TiO 2 CB TiO 2 CB TiO 2 CB TiO 2 CB ½ H 2 ½ H 2 CNT CNT (-0.5 V NHE ) (-0.5 V NHE ) (~ 0 V NHE ) (~ 0 V NHE ) h v h v dye dye H + H + e - e - e - e - e - e - e - e - nafion nafion fi fi D D matrix matrix dye/dye + dye/dye + FTO FTO FTO FTO Pt Pt e - e - e - e - D + D + dye dye TiO 2 /Nafion/CNT/Dye electrode ( J P k ( J. Park and W. Choi, J. Phys. Chem. C d W Ch i J Ph Ch C 2009 , 113 , 20974) 1 µm

  20. Photoelectrochemical Hydrogen Production 1.2 1.2 14 E1 (current) 0.30 {CNT+TiO 2 }/Nf 1.0 E2 (current) (mA) 2+ 12 {CNT+TiO 2 }/Nf/Ru(bpy) 3 E1 (H 2 ) {TiO 2 }/Nf 0.8 0 8 l) E2 (H 2 ) E2 (H ) 10 10 Δ H 2 ( μ mol tocurrent (1-R) 2 /2R 0.20 8 0.6 6 CNT CNT CNT CNT 0.4 0 4 Δ Phot 0.10 4 0.2 2 0 00 0.00 0.0 0 0 0 0 0 10 20 30 40 50 60 300 400 500 600 700 Wavelength (nm) Irradiation time (min) E1: TiO 2 /Nf/RuL 3 with CNT E2: without CNT

  21. Dye-Sensitized TiO 2 with Thin Overcoat of Al 2 O 3 Dye-Sensitized TiO 2 with Thin Overcoat of Al 2 O 3 100 80 ) [H 2 ] ( μ mol 60 40 Al 2 O 3 /TiO 2 /Pt TiO 2 /Pt 20 0 0 50 100 150 200 Al 2p Al 2p Al O /TiO /Pt Al 2 O 3 /TiO 2 /Pt Intensity (a TiO 2 /Pt 0.25 nm arb. unit) Al 2 O 3 80 78 76 74 72 70 68 (W. Kim et al., J. Phys. Chem. C 2009 , 113, 10603) XPS Binding Energy (eV)

  22. Organic Dye Organic Dye Donor Acceptor Strong Intra-molecular Charge Transfer O Organic Dye g y O O (LUMO) NC N COOH S O S O O CB e − h ν h ν TiO 2 VB VB (HOMO) (Y. Park et al., Chem. Commun. 2010 , 46 , 2477) 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend